1. If f is a periodic function of period $2L$, state the formulas for $a_0, a_n,$ and b_n for the Fourier series of f. Once you have these, what is the Fourier series of f?

2. Don’t work harder than you need to. Calculate Fourier series for the following functions. This should take 30 seconds, literally.
 (a) $f(t) = 4$
 (b) $f(t) = \cos(4t)$
 (c) $f(t) = 3\sin(2t)$

3. Cara’s steps for finding a Fourier series (already in order)
 (a) Draw the graph of f on the period given. Extend the graph at least some.
 (b) Use the graph to determine if f is even or odd.
 (c) Use necessary integral formulas to calculate $a_0, a_n,$ and b_n.
 (d) Plug into formula for the Fourier series.

4. Suppose $f(t)$ is a period 2π function with $f(t) = \frac{\pi - t}{2}$ for $0 < t < 2\pi$.
 (a) Sketch the graph of $f(t)$ from -2π to 2π
 (b) Using the graph, is f even, odd, or neither? What does this mean about $a_0, a_n,$ and b_n?
 (c) Calculate the Fourier series of $f(t)$.

5. Note for any c, $a_n = \frac{1}{L} \int_c^{c+2L} f(t) \cos \left(\frac{n\pi t}{L} \right) dt$ (and similarly for the other formulas). Thinking about definite integrals as area, why does this make sense? This means you can take whatever interval is most convenient but even/odd tricks only works for $[-L, L]$.

6. Suppose f is a function with period 2π with $f(t) = t^2$ for $0 < t < 2\pi$.
 (a) Sketch the graph of f from -2π to 2π.
 (b) From the graph, is f even, odd, or neither?
 (c) Calculate the Fourier series of f.
 (d) Plug in 0 and π to both sides to get formulas from $\sum_{n=1}^{\infty} \frac{1}{n^2}$ and $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}$. Note for $t = 0$, the Fourier series converges to the “average” value at 0 which you can read off your graph.
 (e) Add and subtract your two expressions and then divide by 2 above to get find $\sum_{n\text{ odd}} \frac{1}{n^2}$ and $\sum_{n\text{ even}} \frac{1}{n^2}$.

\begin{align*}
\sum_{n=1}^{\infty} \frac{1}{n^2} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2}.
\end{align*}
7. Suppose f is a period 8 function with $f(t) = 3 + t$ for $-4 < t < 4$. Calculate the Fourier series of f. (You might want to break f into pieces and then add the pieces back at the end).

8. Find the form of a particular solution to $y'' - 2y' + 2y = e^x \sin(2x) + 2x + xe^x \sin(x)$. If you value your sanity, don’t attempt to find the coefficients.

9. Find all eigenvalues and the corresponding eigenfunctions for the boundary value problem
 \[y'' + \lambda y = 0 \quad y(0) = 0 \quad y(2) + y'(2) = 0 \]

10. Calculate the Fourier series expansion for the function given below in a full period.
 \[
 f(t) = \begin{cases}
 -t & -1 < t < 0 \\
 t & 0 < t < 1
 \end{cases}
 \]

11. Find the general solution for $y'' + 4y = 3 + \cos(2x)$

12. Solve the IVP
 \[
 y'' + y' - 2y = 2x \quad y(0) = \frac{1}{2} \quad y'(0) = 2
 \]

13. Determine if the oscillator described by the following equation for $x(t)$ is overdamped, underdamped, or critically damped. Then draw a few possible solution curves.
 \[x'' + 2x' + x = 0 \]

14. Find the general solution for $y''' + 4y' = 24x^2$

15. Find a general solution $x(t)$ for the following oscillator equation and then draw a possible solution curve. How would you change the equation so the oscillator is not in pure resonance?
 \[x'' + 9x = 3 \cos(3t) \]

16. Find all eigenvalues and the corresponding eigenfunctions for the boundary value problem
 \[y'' - 4y' + \lambda y = 0 \quad y'(0) = 0 \quad y(2) = 0 \]

17. Using variation of parameters, solve $y'' - 4y' + 4y = 2e^{2x}$

An Ending Thought: *He who doesn’t hope to win has already lost.*

– Simon Bolivar