1 Chain Rule Practice

1. Differentiate the following functions

(a) \(y = (3x + 1)^2 \)

(b) \(y = \sqrt{13x^2 - 5x + 8} \)

(c) \(y = (1 - 4x + 7x^5)^{30} \)

(d) \(y = (4x + x^{-5})^{\frac{1}{3}} \)

(e) \(y = \left(\frac{8x - x^6}{x^3}\right)^{-\frac{3}{5}} \)

(f) \(y = \sin(5x) \)

(g) \(y = e^{5x^2+7x-13} \)

(h) \(y = e^{\cot x} \)

(i) \(y = 3 \tan \sqrt{x} \)

(j) \(y = \cos^2(x^3) \)

(k) \(y = \frac{1}{5} \sec^4(4 + x^3) \)

(l) \(y = e^{\cos^5(3x^4)} \)

(m) \(y = \tan^3 \sqrt{\cot(7x)} \)

2. Assume that \(h(x) = f(g(x)) \), where both \(f \) and \(g \) are differentiable functions. If \(g(-1) = 2 \), \(g'(-1) = 3 \), and \(f'(2) = -4 \), what is the value of \(h'(-1) \)?

3. Assume that \(h(x) = f(x)^3 \), where \(f \) is a differentiable function. If \(f(0) = \frac{1}{2} \) and \(f'(0) = \frac{8}{3} \), determine an equation of the line tangent to the graph of \(h \) at \(x = 0 \).

4. Explain the relationship between \(f' \) and \(g' \) given that \(g(x) = f(3x) \).

5. Explain the relationship between \(f' \) and \(g' \) given that \(g(x) = f(x^2) \).

6. The table below shows some values of the derivative unknown function \(f \). Complete the table by finding (if possible) the derivative of each transformation of \(f \). If it isn’t possible to determine a value, what value do you need?

(a) \(g(x) = f(x) - 2 \)

(b) \(h(x) = 2f(x) \)

(c) \(r(x) = f(-3x) \)

(d) \(s(x) = f(x + 2) \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f'(x))</th>
<th>(g'(x))</th>
<th>(h'(x))</th>
<th>(r'(x))</th>
<th>(s'(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>(\frac{2}{3})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>(-\frac{4}{3})</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2 Implicit Differentiation

1. Let us find the derivative of \(y = \tan^{-1}(x) \).

(a) Rewrite the equation so there are no inverse trig functions.
(b) Take the derivative of both sides with respect to \(x \). Since \(y \) is a function of \(x \), you will need to use the chain rule.
(c) Solve for \(y' \)
(d) In this equation, replace \(y \) with what it equals
(e) Simplify! (Hint: you may need to draw a triangle)
(f) Repeat the process to find the derivative of \(y = \arcsin(x) \) and \(y = \arccos(x) \).

2. Now let us try to find some tangent lines to the curve \(y^2 = x^3 - x \)

(a) Differentiate both sides of the equation with respect to \(x \), thinking of \(y \) as a function of \(x \) (you will need the chain rule again!)
(b) Solve for \(y' \) (in terms of both \(x \) and \(y \))
(c) Find an equation of the tangent line to this curve at \((-\frac{1}{2}, \sqrt{\frac{3}{8}}) \).
(d) Find an equation of the tangent line to this curve at \((-\frac{1}{2}, -\sqrt{\frac{3}{8}}) \).
(e) Find an equation of the tangent line to this curve at \((0,0) \). What went wrong? (Hint: Check the graph)

3. Use the process above to find the derivative of \(y = \ln(x) \) given that you know the derivative of \(e^x \). This process is called implicit differentiation.

4. Find \(\frac{dy}{dx} \) by implicit differentiation.

(a) \(x^2 + y^2 = 36 \) \hspace{1cm} (e) \(x^3 - 3x^2y + 2xy^2 = 12 \)
(b) \(\sqrt{x} + \sqrt{y} = 9 \) \hspace{1cm} (f) \(\sin x + 2 \cos 2y = 1 \)
(c) \(x^3 - xy + y^2 = 4 \) \hspace{1cm} (g) \(\sin x = x(1 + \tan y) \)
(d) \(x^3y^3 - y = x \) \hspace{1cm} (h) \(y = \sin(xy) \)

5. Based on the examples above, when do you need to use implicit differentiation?

An Ending Thought: *Go to work. Do your best. Don’t outsmart your common sense.*

– “Love Like Crazy” by Lee Brice