Differential Geometry: Notes on groups and actions

August 30, 2006

A **topological group** is a Hausdorff topological space G which is also a group so that the group operations are continuous. That is:

- multiplication: $m: G \times G \to G$ given by m(g,h) = gh, and
- **inversion:** $i: G \to G$ given by $i(g) = g^{-1}$

are continuous maps.

If G is also a smooth manifold and m and i are smooth maps, then G is called a **Lie group**.

A (left) action of a topological group on a topological space X is a continuous map

$$G \times X \to X$$

denoted $(g,x) \mapsto g \cdot x$, with the property that for every $g,h \in G$ and $x \in X$, one has

- $g \cdot (h \cdot x) = (gh) \cdot x$
- $\mathbf{1} \cdot x = x$

Here 1 is the identity element of G.

If M is a smooth manifold and G is a Lie group, then we say that an action of G on M is smooth if the action map

$$G \times M \to M$$

is smooth.

Note that if G acts on X and $Y \subset X$ is invariant (meaning $g \cdot y \in Y$ for every $g \in G$ and $y \in Y$), then G restricts to an action on Y.

Suppose G acts on X. If, for any compact set $K \subset X$, the set

$$\{g \mid gK \cap K \neq \emptyset\}$$

is compact, then we say that the action of G is **proper**.

We sometime refer to groups with the discrete topology as a **discrete groups**, and an action by a group with the discrete topology as a discontinuous action. Note that a proper and discontinuous (sometimes called, properly discontinuous) action of a group G on X has the property that for every K, the set defined above in G is *finite*. An action is free if $g \cdot x = x$ implies g = 1.

Note that a countable discrete group is a Lie group.

The **orbit space** of X by the action of a group G is denoted X/G and is the set of orbits of X with the quotient topology.

$$\pi:X\to X/G$$