Theorem. If $\Gamma < \text{Isom}^+(\mathbb{H}^2)$ is a cocompact Fuchsian group, then

$$\mu \left(\mathbb{H}^2 / \Gamma \right) \geq \frac{\pi}{21}$$

Proof. Writing the signature $\text{sign}(\Gamma) = (g; c_1, \ldots, c_N)$, then the Gauss-Bonnet Theorem states:

$$\mu(\mathbb{H}^2 / \Gamma) = 2\pi \left(2g - 2 + \sum_{i=1}^{N} \left(1 - \frac{1}{c_i} \right) \right)$$

Note: $1 - \frac{1}{c_i} \geq \frac{1}{2}$ for each i with equality if and only if $c_i = 2$.

Further, if $\text{sign}(\Gamma) = (g'; c_1', \ldots, c_N')$ and $g \leq g'$, $c_i \leq c_i'$ for each i, then

$$\mu(\mathbb{H}^2 / \Gamma) \leq \mu(\mathbb{H}^2 / \Gamma')$$

We now consider all possibilities for the signature. For each signature, we either bound the area from below by $\frac{\pi}{21}$ or else verify that there is no hyperbolic orbifold with that signature.

- **$g \geq 2$:**

 $$\mu(\mathbb{H}^2 / \Gamma) \geq 2\pi(2g - 2) \geq 4\pi$$

- **$g = 1$:**

 $$\mu(\mathbb{H}^2 / \Gamma) = 2\pi \left(\sum_{i=1}^{N} \left(1 - \frac{1}{c_i} \right) \right)$$

 This is positive if and only if $N > 0$. In this case

 $$\mu(\mathbb{H}^2 / \Gamma) \geq 2\pi \frac{1}{2} = \pi$$

- **$g = 0$:**

 - **$N \geq 5$:**
 $$\mu(\mathbb{H}^2 / \Gamma) = 2\pi \left(-2 + \sum_{i=1}^{N} \left(1 - \frac{1}{c_i} \right) \right) \geq 2\pi \left(-2 + \frac{5}{2} \right) = \pi$$

 - **$N = 4$:**
 $$\mu(\mathbb{H}^2 / \Gamma) = 2\pi \left(-2 + \sum_{i=1}^{4} \left(1 - \frac{1}{c_i} \right) \right) = 2\pi \left(2 - \sum_{i=1}^{4} \frac{1}{c_i} \right)$$

 This area is positive if and only if $(c_1, c_2, c_3, c_4) \neq (2, 2, 2, 2)$. Furthermore it is minimized when $(c_1, c_2, c_3, c_4) = (2, 2, 2, 3)$:

 $$\mu(\mathbb{H}^2 / \Gamma) = 2\pi \left(2 - \left(\frac{3}{2} + \frac{1}{3} \right) \right) = \frac{\pi}{3}$$

 - **$N = 3$:**
 $$\mu(\mathbb{H}^2 / \Gamma) = 2\pi \left(1 - \sum_{i=1}^{3} \frac{1}{c_i} \right)$$

 For this to be positive, we need

 $$\frac{1}{c_1} + \frac{1}{c_2} + \frac{1}{c_3} < 1$$

 This means (c_1, c_2, c_3) can **not** be of one of the following types:

 $$(2, 2, n), n \geq 2; \quad (2, 3, n), n = 3, \ldots, 6; \quad (2, 4, 4); \quad (3, 3, 3)$$

 The minimal triples (c_1, c_2, c_3) remaining, along with the area of their respective orbifolds are given by

 $$(2, 3, 7), \frac{\pi}{21}; \quad (2, 4, 5), \frac{\pi}{10}; \quad (3, 3, 4), \frac{\pi}{6}$$

 - **$N \leq 2$:**
 There are no hyperbolic orbifolds in this case.

This gives all the cases and so completes the proof. \qed