1. Let \mathbb{Q} denote the additive group of rational numbers and H, K groups such that $\mathbb{Q} \cong H \times K$. Prove that either $|H| = 1$ or $|K| = 1$. That is, \mathbb{Q} cannot be expressed as a nontrivial direct product. Can it be a nontrivial semi-direct product? Explain.

2. Let G be a nonabelian finite simple group and let p be the smallest prime dividing $|G|$. Prove that there is no subgroup of index p in G.

3. Let n be a positive integer and p an odd prime with $p \leq n$.

 (i) Prove that every element of order p in S_n is an even permutation

 (ii) Prove that A_n can be generated by p-cycles

 (iii) Show that the number of p-cycles in S_n is given by

 $$L(n,p) = \binom{n}{p} (p-1)!$$

 (iv) Show that the number of elements of order p in S_n is

 $$\sum_{j=1}^{J} L(n,p)L(n-p,p)L(n-2p,p)\cdots L(n-(j-1)p,p) \frac{1}{j!}$$

 where J is the greatest integer less than or equal to n/p.

4. Let p and q be distinct primes and G a group of order p^3q.

 (i) Prove that G either has a normal Sylow p subgroup or a normal Sylow q subgroup, unless $p = 2$ and $q = 3$.

1
(ii) Prove that S_4 does not have a normal Sylow 2 subgroup nor a normal Sylow 3 subgroup.

5. Let G_1 and G_2 be groups and suppose G_1 acts faithfully on a set X_1 and G_2 acts faithfully on a set X_2. If $|G_1| = |G_2| = 81$ and $|X_1| = |X_2| = 9$, prove that there exists an isomorphism $\phi : G_1 \to G_2$ and a bijection $f : X_1 \to X_2$ so that

$$f(g \cdot x) = \phi(g) \cdot f(x)$$

for all $x \in X_1$ and $g \in G_1$.

6. Let G be a finite group, $H \leq G$ and $g \in G$. Consider the usual action of G on the set of left cosets $G//H = \{xH\}_{x \in G}$, and let n be the number of left cosets which are fixed by g:

$$n = |\{xH \mid gxH = xH\}|.$$

Prove

$$n = \frac{|C_G(g)| |[g] \cap H|}{|H|},$$

where $[g]$ denotes the conjugacy class of g in G, and hence $|[g] \cap H|$ is the number of conjugates of g that lie in H.

Hint: consider both the action of G on $G//H$ as well as the action of G on $[g]$ by conjugation.

7. Problem 18, section 4.4, page 138 (you may assume exercise 33 of section 4.3).