1. For each of the following functions $f : \mathbb{R}^2 \to \mathbb{R}$, draw a sketch of the graph together with pictures of some level sets.

 (a) $f(x, y) = xy$

 (b) $f(x) = |x|$. Please note here that x is a vector. In coordinates, this function is $f(x, y) = \sqrt{x^2 + y^2}$.

For (a), the result is one of the many quadric surfaces. What is the name for this type? Is the graph in (b) also a quadric surface?

Solution.

(a) The graph of the function $f(x, y) = xy$ is

![Figure 1: Graph of $f(x, y) = xy$.](image)

The graph of the level sets $f(x, y) = -2, -1, 0, 1, 2$ is

![Figure 2: Graph of Level Sets of $f(x, y) = xy$.](image)
The graph of \(f(x, y) = xy \) is a hyperbolic paraboloid since the horizontal traces are hyperbolas and the vertical traces are parabolas.

(b) The graph of the function \(f(x) = |x| \) is

![Figure 3: Graph of \(f(x) = |x| \).](image)

The graph of the level sets \(f(x, y) = 0, 1, 2, 3 \) is

![Figure 4: Graph of Level Sets of \(f(x) = |x| \).](image)

The graph of \(f(x) = |x| \) is not a quadric surface because it cannot be written as \(Ax^2 + By^2 + Cz^2 + Dxy + Eyz + Fxz + Gx + Hy + Iz + J = 0 \). It is the top half of a cone, which is a quadric surface.

2. Consider the function \(f: \mathbb{R}^2 \rightarrow \mathbb{R} \) given by

\[
f(x, y) = \frac{2x^3y}{x^6 + y^2} \text{ for } (x, y) \neq 0
\]

In this problem, you'll consider \(\lim_{(x,y) \to 0} f(x, y) \).
(a) Look at the values of \(f \) on the \(x \)- and \(y \)-axes. What do these values show the limit \(\lim_{(x, y) \to 0} f(x, y) \) must be if it exists?

Solution. Along \(y = 0 \), \(\lim_{(x, y) \to 0} f(x, y) = \lim_{x \to 0} f(x, 0) = \lim_{x \to 0} \frac{0}{x^6} = 0. \)

Along \(x = 0 \), \(\lim_{(x, y) \to 0} f(x, y) = \lim_{y \to 0} f(0, y) = \lim_{y \to 0} \frac{0}{y^2} = 0. \)

Thus, should it exist, we must have \(\lim_{(x, y) \to 0} f(x, y) = 0. \)

(b) Show that along each line in \(\mathbb{R}^2 \) through the origin, the limit of \(f \) exists and is 0.

Solution. Any line through the origin besides \(x = 0 \) or \(y = 0 \) can be written as \(y = mx, \ m \neq 0. \)

Along \(y = mx \), \(\lim_{(x, y) \to 0} f(x, y) = \lim_{x \to 0} f(x, mx) = \lim_{x \to 0} \frac{2mx^4}{x^6 + m^2x^2} = \lim_{x \to 0} \frac{2mx^2}{x^4 + m^2} = 0. \)

(c) Despite this, show that the limit \(\lim_{(x, y) \to 0} f(x, y) \) does not exist by finding a curve over which \(f \) takes on the constant value 1.

Solution. Along \(y = x^3 \), \(\lim_{(x, y) \to 0} f(x, y) = \lim_{x \to 0} f(x, x^3) = \lim_{x \to 0} \frac{2x^6}{x^6 + x^6} = 1. \)

3. Consider the function \(f : \mathbb{R}^2 \to \mathbb{R} \) given by

\[
 f(x, y) = \frac{xy^2}{\sqrt{x^2 + y^2}} \quad \text{for } (x, y) \neq 0
\]

In this problem, you’ll show \(\lim_{h \to 0} f(h) = 0. \)

(a) For \(\epsilon = 1/2, \) find some \(\delta > 0 \) so that when \(0 < |h| < \delta \) we have \(|f(h)| < \epsilon. \) Hint: As with the example in class, the key is to relate \(|x| \) and \(|y| \) with \(|h|. \)

Solution. Note that \(|x|, |y| \leq |h|. \) For \(\epsilon = 1/2, \) let \(\delta = 1/\sqrt{2}. \) Then \(0 < |h| < \delta \) implies

\[
|f(h)| \leq \frac{|h|^3}{|h|} = |h|^2 < \delta^2 = \frac{1}{2}.
\]

(b) Repeat with \(\epsilon = 1/10. \)

Solution. For \(\epsilon = 1/10, \) let \(\delta = 1/\sqrt{10}. \) Then \(0 < |h| < \delta \) implies

\[
|f(h)| \leq |h|^2 < \delta^2 = \frac{1}{10}.
\]
(c) Now show that \(\lim_{h \to 0} f(h) = 0 \). That is, given an arbitrary \(\epsilon > 0 \), find a \(\delta > 0 \) so that when \(0 < |h| < \delta \) we have \(|f(h)| < \epsilon \).

Solution. Given \(\epsilon > 0 \), let \(\delta = \sqrt{\epsilon} \). Then \(0 < |h| < \delta \) implies

\[
|f(h)| \leq |h|^2 < \delta^2 = \epsilon.
\]

(d) Explain why the limit laws that you learned in class on Wednesday aren't enough to compute this particular limit.

Solution. \(f(x, y) \) cannot be written as \(f(x, y) = g(x, y)h(x, y) \) so that \(\lim_{|x| \to 0} g(x) \) and \(\lim_{|x| \to 0} h(x) \) both exist and are easier to compute than \(\lim_{|x| \to 0} f(x) \).