FUNCTIONS FROM $\mathbb{R}^n \to \mathbb{R}^m$

- **Example 1**:
 \[f(x) = x^2 - 1 \]
 \[f: \mathbb{R} \to \mathbb{R} \]
 Domain and range both \mathbb{R}.

- **Example 2**:
 \[f(x, y) = x^2 + y^2 \]
 \[f: \mathbb{R}^2 \to \mathbb{R} \]
 Domain is \mathbb{R}^2.

- **Example 3**:
 \[f(x, y, z) = (xy, yz) \]
 \[f: \mathbb{R}^3 \to \mathbb{R}^2 \]
 Domain is \mathbb{R}^3.

Much of general theory is evident for $f: \mathbb{R}^2 \to \mathbb{R}$, so we start there.

Graphs

1. \[f(x) = x^2 - 1 \]
 - Graph of $f = \{(x, f(x)) \in \mathbb{R}^2 \}$

 ![Graph of $f(x) = x^2 - 1$](image)

2. \[f(x, y) = x^2 + y^2 \]
 - Graph of $f = \{(x, y, f(x, y)) \in \mathbb{R}^3 \}$

 ![Graph of $f(x, y) = x^2 + y^2$](image)
Can try to visualize graphs by intersecting with planes:

\[y = -1, \quad y = 0, \quad y = 1 \]

For varying values of \(c \), gives "slices" of \(\mathbb{R}^3 \).

Intersection with graph \(z = x^2 + y^2 \) is \(z = x^2 + c^2 \), helps visualize entire graph in \(\mathbb{R}^3 \) (reconstruct graph from slices—think MRI).

Intersecting with \(z = c \) is particularly useful.

Then just see \(\{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = c^2\} \), so for different values of \(c \):

These are examples of level sets (or level curves in this case, \(f: \mathbb{R}^2 \to \mathbb{R} \))

In general, the level sets of a function \(f: \mathbb{R}^n \to \mathbb{R} \) is \(\{(x_1, \ldots, x_n) \mid f(x_1, \ldots, x_n) = c \} \) for any constant \(c \).
EX \(f(x,y) = y^2 - x^2 \)
\[y^2 - x^2 = c \text{, for } c = -2, -1, 0, 1, 2 \]
GRAPH IS A SADDLE

EX \(g(x,y) = x + 2y + 1 \)
\[x + 2y + 1 = c \]
LINES with
SLOPE \(-1\)
EQUALLY SPACED

UP A DIMENSION:
EX \(h(x,y,z) = x^2 + y^2 + z^2 \)
WHAT ARE THE LEVEL SETS?
concentric spheres
\[x^2 + y^2 + z^2 = c \]
GRAPH IS \(\{ (x,y,z) \mid f(x,y,z) \} \) OR \(x^2 + y^2 + z^2 = 0 \) HARD TO VISUALIZE

EX HOPF FIBRATION (BASICALLY) \(F : \mathbb{R}^3 \rightarrow \mathbb{R}^2 \) LEVEL CURVES - SEE VIDEO