Compute the integral
\[\int_{R} \int (y - 4x) \, dA \]
where \(R \) is the parallelogram with vertices \((0, 0), (2, -1), (3, 3), \) and \((1, 4)\).

A \(\frac{13}{4} \)
B \(\frac{21}{5} \)
C \(-\frac{81}{2} \)
D \(-\frac{175}{2} \)
E I got something different.
For the transformation \(T(r, \theta) = (r \cos(\theta), r \sin(\theta)) \), ...

\[
\det(J(r, \theta)) = \frac{\partial(x,y)}{\partial(r,\theta)} =
\]

A 1
B 2
C \(r \)
D \(r^2 \)
E I got something different.
For the transformation $T(v, u) = (v, u(1 + v^2))$, ...

\[
\text{det}(J(u, v)) = \frac{\partial(x,y)}{\partial(u,v)} =
\]

A $-uv^2$

B $-(1 + v^2)$

C uv

D $u + v^2$

E I got something different.
Find a linear change of coordinates to compute the volume of the region R bounded by the ellipsoid

$$x^2 + 4y^2 + 4z^2 = 1.$$

A $\frac{\pi}{2}$
B $\frac{\pi}{3}$
C $\frac{\pi^2}{3}$
D π
E I got something different.