Find the absolute maximum value of the function

\[f(y, z) = xy \]

on the unit disk

\[D = \{(x, y) \mid x^2 + y^2 \leq 1\}. \]
Could \(f(x, y) = y^2 - x^2 \) have a max or min value on the curve \(y + 2x = x^2 + 1 \) at the point \((1, 0)\)?

A Yes.
B No.
C I don’t know.
Could \(f(x, y) = y^2 - x^2 \) have a max or min value on the curve \(y + 2x = x^2 + 1 \) at the point \((2, 1) \)?

A Yes.
B No.
C I don’t know.
In the method of Lagrange multipliers, for

\[\nabla f = \lambda \nabla g \quad \text{and} \quad g = c \]

any solution with \(\lambda = 0 \) should be discarded.

True or False?

A True.

B False.

C I don’t know.
I know I registered my i>clicker, I don’t need to go on to Moodle and make sure my scores are being recorded.

True or False?

A True.
B False.
C I don’t know.