1. Consider the ellipsoid with implicit equation
\[\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1. \]

(a) Parameterize this ellipsoid.
(b) Set up, but do not evaluate, a double integral that computes its surface area.

2. Let
\[\mathbf{r}(u, v) = \langle (2 + \cos u) \cos v, (2 + \cos u) \sin v, \sin u \rangle, \]
where \(0 \leq u \leq 2\pi \) and \(0 \leq v \leq 2\pi \).

(a) Sketch the surface parameterized by this function.
(b) Compute its surface area.

3. Consider the surface integral
\[\iint_{\Sigma} z \, dS \]
where \(\Sigma \) is the surface with sides \(S_1 \) given by the cylinder \(x^2 + y^2 = 1 \), \(S_2 \) given by the unit disk in the \(xy \)-plane, and \(S_3 \) given by the plane \(z = x + 1 \). Evaluate this integral as follows:

(a) Parameterize \(S_1 \) using \((\theta, z)\) coordinates.
(b) Evaluate the integral over the surface \(S_2 \) without parameterizing.
(c) Parameterize \(S_3 \) in (Des)cartesian coordinates and evaluate the resulting integral using polar coordinates.

4. Let \(C \) be the circle in the plane with equation \(x^2 + y^2 - 2x = 0 \).

(a) Parameterize \(C \) as follows. For each choice of a slope \(t \), consider the line \(L_t \) whose equation is \(y = tx \). Then the intersection \(L_t \cap C \) of \(L_t \) and \(C \) contains two points, one of which is \((0, 0)\). Find the other point of intersection, and call its \(x \)- and \(y \)-coordinates \(x(t) \) and \(y(t) \). Compute a formula for \(\mathbf{r}(t) = \langle x(t), y(t) \rangle \). Check your answer with your TA.
(b) Suppose that \(t = \frac{p}{q} \) is a rational number. Show that \(x(p/q) \) and \(y(p/q) \) are also rational numbers. Explain how, by clearing denominators in \(x(p/q) - 1 \) and \(y(p/q) \), you can find a triple of integers \(U, V, \) and \(W \) for which \(U^2 + V^2 = W^2 \).
(c) Compute \(\int_C \frac{1}{2} \langle -y, x \rangle \cdot d\mathbf{r} \) using your parameterization above.