1. Consider the region R in \mathbb{R}^2 shown below at right. In this problem, you will do a change of coordinates to evaluate:

$$\iint_R x - 2y \, dA$$

(a) Find a linear transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ which takes the unit square S to R.

Write you answer both as a matrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ and as $T(u, v) = (au + bv, cu + dv)$, and check your answer with the instructor.

(b) Compute $\iint_R x - 2y \, dA$ by relating it to an integral over S and evaluating that. Check your answer with the instructor.

2. Another simple type of transformation $T: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ is a translation, which has the general form $T(u, v) = (u + a, v + b)$ for a fixed a and b.

(a) If T is a translation, what is its Jacobian matrix? How does it distort area?

(b) Consider the region $S = \{u^2 + v^2 \leq 1\}$ in \mathbb{R}^2 with coordinates (u, v), and the region $R = \{(x-2)^2 + (y-1)^2 \leq 1\}$ in \mathbb{R}^2 with coordinates (x, y).

Make separate sketches of S and R.

(c) Find a translation T where $T(S) = R$.

(d) Use T to reduce

$$\iint_R x \, dA$$

to an integral over S, and then evaluate that new integral using polar coordinates.

(e) Check your answer in (d) with the instructor.

Problems 3 and 4 on the back.
3. Consider the region R shown below. Here the curved left side is given by $x = y - y^2$. In this problem, you will find a transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ which takes the unit square $S = [0, 1] \times [0, 1]$ to R.

(a) As a warm up, find a transformation that takes S to the rectangle $[0, 2] \times [0, 1]$ which contains R.

(b) Returning to the problem of finding T taking S to R, come up with formulas for $T(u, 0)$, $T(u, 1)$, $T(0, v)$, and $T(1, v)$. Hint: For three of these, use your answer in part (a).

(c) Now extend your answer in (b) to the needed transformation T. Hint: Try “filling in” between $T(0, v)$ and $T(1, v)$ with a straight line.

(d) Compute the area of R in two ways, once using T to change coordinates and once directly.

4. If you get this far, evaluate the integrals in Problems 1 and 2 directly, without doing a change of coordinates. It’s a fun-filled task...