Boundary orientation

S a surface oriented by unit normal \mathbf{n}, and bounded by a closed curve C. Call C the boundary of S.

$\partial S = C$ oriented “to the left, standing on S looking at C.”
Example: S a region in the xy-plane bounded by C. Orienting S by \(n = k \), \(\partial S \) is the usual positive orientation.

Example: S part of \(z = 1 - x^2 + y^2 \) with \(z \geq 0 \), oriented with upward pointing normal. Then \(\partial S \) is the unit circle in the xy-plane oriented counterclockwise (positively in the xy-plane).

Example: S southern hemisphere in \(x^2 + y^2 + z^2 = 9 \) (i.e. \(z \leq 0 \)), oriented with outward pointing normal on the sphere. \(\partial S \) is the circle of radius 3 in xy-plane \(x^2 + y^2 = 9 \) oriented *clockwise*.
Stokes Theorem

Theorem. If \mathbf{F} is a continuously differentiable vector field on \mathbb{R}^3, and S is an oriented surface bounded by a simple closed curve, then

$$
\int_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iint_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S}
$$
Stokes Theorem: Special case

Suppose \(\mathbf{F}(x, y, z) = \langle P(x, y), Q(x, y), 0 \rangle \), \(S \) a region in the \(xy \)-plane bounded by a simple closed curve, oriented by \(\mathbf{n} = \mathbf{k} \)

\[
\int_{\partial S} \mathbf{F} \cdot d\mathbf{r} = \iiint_S \text{curl}(\mathbf{F}) \cdot d\mathbf{S}
\]

\[
= \iiint_S \langle 0, 0, Q_x - P_y \rangle \cdot \mathbf{k} \, dS
\]

\[
= \iiint_S Q_x - P_y \, dA \quad \text{Green’s Theorem!!}
\]