Implicit Function Theorem

Theorem. Suppose $f: \mathbb{R}^2 \to \mathbb{R}$ is differentiable and $f(a, b) = 0$.

- If $f_y(a, b) \neq 0$, then there is a differentiable function $g(x)$ defined on an interval $(a - \epsilon, a + \epsilon)$ so that $g(a) = b$ and for every $x \in (a - \epsilon, a + \epsilon)$, we have $f(x, g(x)) = 0$. Furthermore,

 $$g'(x) = -\frac{f_x(x, g(x))}{f_y(x, g(x))} \quad \text{or} \quad \frac{dy}{dx} = -\frac{\partial f}{\partial x} \frac{\partial f}{\partial y}$$

- If $f_x(a, b) \neq 0$, then there is a differentiable function $h(y)$ defined on an interval $(b - \epsilon, b + \epsilon)$ so that $h(b) = a$ and for every $y \in (b - \epsilon, b + \epsilon)$, we have $f(h(y), y) = 0$. Furthermore,

 $$h'(y) = -\frac{f_y(h(y), y)}{f_x(h(y), y)} \quad \text{or} \quad \frac{dx}{dy} = -\frac{\partial f}{\partial y} \frac{\partial f}{\partial x}$$

www.math.uiuc.edu/~clein/classes/2014/fall/241.html
Suppose \(f \) is differentiable and \(f(a, b) = 0 \) with \(\nabla f(a, b) \neq 0 \).

Implicit function theorem \(\Rightarrow \)

\[\nabla f(a, b) \text{ is orthogonal to } f(x, y) = 0 \text{ at } (a, b). \]

Tangent line at \((a, b) \):

\[\langle x - a, y - b \rangle \cdot \nabla f(a, b) = 0. \]
Implicit Function Theorem. If f is differentiable and $f(a_1, \ldots, a_n) = 0$ with $f_{x_k}(a_1, \ldots, a_n) \neq 0$ some $k = 1, \ldots, n$, then near (a_1, \ldots, a_n), $f(x_1, \ldots, x_n) = 0$ is the graph of a differentiable function of the other $n-1$ variables.

E.g. If $\nabla f(a, b, c) \neq 0$, then near (a, b, c), the level surface $f(x, y, z) = 0$ is the graph of a function of two variables, and the tangent plane is

$$\langle x - a, y - b, z - c \rangle \cdot \nabla f(a, b, c) = 0.$$

In general $\nabla f(a_1, \ldots, a_n)$ is orthogonal to “tangent hyperplane” to level set $f(x_1, \ldots, x_n) = 0$.

www.math.uiuc.edu/~clein/classes/2014/fall/241.html
Local max/min

Suppose $\nabla f(a_1, \ldots, a_n) \neq 0$. Then at (a_1, \ldots, a_n)
- f increases in direction of $\nabla f(a_1, \ldots, a_n)$ and
- f decreases in direction of $-\nabla f(a_1, \ldots, a_n)$.

Theorem At a local max/min, either f fails to be differentiable or $\nabla f = 0$.

www.math.uiuc.edu/~clein/classes/2014/fall/241.html