1. Evaluate the following integral by reversing the order of integration:

\[\int_0^1 \int_{\sqrt[3]{x^3+1}}^1 \sqrt{x^3+1} \, dx \, dy. \]

(Hint: When you change to \(dx \, dy \), be sure to also change the bounds of integration.)

SOLUTION:

We are integrating over the region below:

Changing the order of integration we get

\[\int_0^1 \int_{\sqrt[3]{x^3+1}}^1 \sqrt{x^3+1} \, dx \, dy = \int_0^{x^3+1} \int_0^{\sqrt[3]{x^3+1}} \sqrt{x^3+1} \, dy \, dx \]

\[= \int_0^{x^3+1} \left[\frac{2}{9} \left(\frac{3}{2} \right)^{3/2} \right]_0^{x^3+1} = \frac{2}{9} \left(2^{3/2} - 1 \right). \]
2. Consider the region bounded by the curves determined by $-2x + y^2 = 6$ and $-x + y = -1$.

(a) Sketch the region R in the plane.

SOLUTION:

(b) Set up and evaluate an integral of the form $\int\int_R \, dA$ that calculates the area of R.

SOLUTION:

$$\int_{-2}^4 \int_{y^2/6}^{y+1} \, dx \, dy = \int_{-2}^4 y + 1 - \frac{y^2 - 6}{2} \, dy = \left[-\frac{1}{6}y^3 + \frac{1}{2}y^2 + 4y\right]_{-2}^{4} = 18$$
3. Consider the region R in the first quadrant which lies above the x-axis and between the circles of radius 1 and 2 centered at (0, 0). Without using polar coordinates, evaluate \[\iint_R y \, dA. \]

SOLUTION: Notice that both the function y and the region R are symmetric about the y-axis, so we can integrate y over the half of R which lies in the first quadrant (Call this R') and double our answer. R' is shown below.

Break up R' into two parts A and B as above. Integrating, we obtain

\[
\iint_R y \, dA = \iint_A y \, dA + \iint_B y \, dA = \int_0^1 \int_{\sqrt{1-x^2}}^{\sqrt{4-x^2}} y \, dy \, dx + \int_1^2 \int_0^{\sqrt{4-x^2}} y \, dy \, dx \\
= \int_0^1 \left(\frac{y^2}{2} \right)_{\sqrt{1-x^2}}^{\sqrt{4-x^2}} \, dx + \int_1^2 \left(\frac{y^2}{2} \right)_0^{\sqrt{4-x^2}} \, dx = \int_0^1 \frac{3}{2} \, dx + \int_1^2 \frac{1}{2} (4 - x^2) \, dx \\
= \frac{7}{3}
\]

Now double this value to get $14/3$, which is the integral over the entire region R.
4. Evaluate
\[\int_{-2}^{0} \int_{0}^{\sqrt{4-x^2}} (x^2 + y^2) \, dy \, dx. \]

Hint: don't do it directly.

SOLUTION:

The region over which we are integrating is:

![Region Diagram]

Converting to polar we get

\[\int_{-2}^{0} \int_{0}^{\sqrt{4-x^2}} (x^2 + y^2) \, dy \, dx = \int_{\pi/2}^{\pi} \int_{0}^{2} (r^2) \, r \, dr \, d\theta = 2\pi \]
5. The function \(P(x) = e^{-x^2} \) is fundamental in probability.

(a) Sketch the graph of \(P(x) \). Explain why it is called a “bell curve.”

SOLUTION:

(b) Compute \(I = \int_{-\infty}^{\infty} e^{-x^2} \, dx \) using the following brilliant strategy of Gauss.

1. Instead of computing \(I \), compute \(I^2 = \left(\int_{-\infty}^{\infty} e^{-x^2} \, dx \right) \left(\int_{-\infty}^{\infty} e^{-y^2} \, dy \right) \).

2. Rewrite \(I^2 \) as an integral of the form \(\iint_R f(x, y) \, dA \) where \(R \) is the entire Cartesian plane.

SOLUTION:

\[
I^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} \, dy \, dx
\]

3. Convert that integral to polar coordinates.

SOLUTION:

\[
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} \, dy \, dx = \int_0^{2\pi} \int_0^{\infty} re^{-r^2} \, dr \, d\theta
\]

4. Evaluate to find \(I^2 \). Deduce the value of \(I \).

SOLUTION:

\[
\int_0^{2\pi} \int_0^{\infty} re^{-r^2} \, dr \, d\theta = 2\pi \int_0^{\infty} re^{-r^2} \, dr = 2\pi \lim_{t \to \infty} \int_0^{t} re^{-r^2} \, dr = 2\pi \lim_{t \to \infty} \left[-\frac{1}{2} e^{-r^2} \right]_0^t
\]

\[
= \pi \lim_{t \to \infty} (-e^{-t^2} + 1) = \pi
\]

So \(I = \sqrt{\pi} \).
6. Compute \(\int_0^\infty \int_0^\infty \frac{1}{(1 + x^2 + y^2)^2} \, dx \, dy \).

SOLUTION:

As in the previous problem, let's convert to polar coordinates.

\[
\int_0^\infty \int_0^\infty \frac{1}{(1 + x^2 + y^2)^2} \, dx \, dy = \int_0^{\pi/2} \int_0^\infty \frac{r}{(1 + r^2)^2} \, dr \, d\theta = \frac{\pi}{2} \int_0^\infty \frac{r}{(1 + r^2)^2} \, dr
\]

This is an improper integral, so

\[
\frac{\pi}{2} \int_0^\infty \frac{r}{(1 + r^2)^2} \, dr = \frac{\pi}{2} \lim_{t \to \infty} \int_0^t \frac{r}{(1 + r^2)^2} \, dr = \frac{\pi}{4} \lim_{t \to \infty} \left[-\frac{1}{1 + r^2} \right]_0^t
\]

\[
= \frac{\pi}{4} \lim_{t \to \infty} \left(-\frac{1}{1 + t^2} + 1 \right) = \frac{\pi}{4}
\]