Tuesday, January 15 * Solutions * A review of some important calculus topics

1. Chain Rule:

 (a) Let \(h(t) = \sin(\cos(\tan t)) \). Find the derivative with respect to \(t \).

 Solution.

 \[
 \frac{d}{dt}(h(t)) = \frac{d}{dt}(\sin(\cos(\tan t)))
 = \cos(\cos(\tan t)) \cdot \frac{d}{dt}(\cos(\tan t))
 = \cos(\cos(\tan t)) \cdot (\cos(\tan t)) \cdot \frac{d}{dt}(\cos(\tan t))
 = \cos(\cos(\tan t)) \cdot (-\sin(\tan t)) \cdot \sec^2 t
 \]

 (b) Let \(s(x) = \sqrt{x} \) where \(x(t) = \ln(f(t)) \) and \(f(t) \) is a differentiable function. Find \(\frac{ds}{dt} \).

 Solution. From \(\frac{ds}{dt} = \frac{ds}{dx} \cdot \frac{dx}{dt} \), we get

 \[
 \frac{ds}{dt} = \frac{1}{4x^{3/4}} \cdot f'(t) \cdot f(t).
 \]

 But we need to make sure that \(\frac{ds}{dt} \) is a single variable function of \(f \), so

 \[
 \frac{ds}{dt} = \frac{1}{4[\ln(f(t))]^{3/4}} \cdot f'(t) \cdot f(t).
 \]

2. Parameterized curves:

 (a) Describe and sketch the curve given parametrically by

 \[
 \begin{cases}
 x = 5 \sin(3t) \\
 y = 3 \cos(3t)
 \end{cases}
 \text{for } 0 \leq t < \frac{2\pi}{3}.
 \]

 What happens if we instead allow \(t \) to vary between 0 and \(2\pi \)?

 Solution. Note that

 \[
 \left(\frac{x}{5}\right)^2 + \left(\frac{y}{3}\right)^2 = \sin^2(3t) + \cos^2(3t) = 1.
 \]

 So this parameterizes (at least part of) the ellipse \(\left(\frac{x}{5}\right)^2 + \left(\frac{y}{3}\right)^2 = 1 \).
By examining differing values of t in $0 \leq t \leq \frac{2\pi}{3}$, we see that this parametrization travels the ellipse in a clockwise fashion exactly once.

- $t = 0: (x(0), y(0)) = (0, 3)$
- $t = \pi/6: (x(\pi/6), y(\pi/6)) = (5, 0)$
- $t = \pi/3: (x(\pi/3), y(\pi/3)) = (0, -3)$
- $t = \pi/2: (x(\pi/2), y(\pi/2)) = (-5, 0)$

![Figure 1: Ellipse.](image)

If we let t vary between 0 and 2π, we will traverse the ellipse 3 times.

(b) Set up, but **do not evaluate** an integral that calculates the arc length of the curve described in part (a).

Solution. Arc length

\[
s = \int_{a}^{b} \sqrt{\left(\frac{dx}{dt} \right)^2 + \left(\frac{dy}{dt} \right)^2} \, dt
\]

\[
= \int_{0}^{\frac{2\pi}{3}} \sqrt{(15 \cos(3t))^2 + (-9 \sin(3t))^2} \, dt.
\]

(c) Consider the equation $x^2 + y^2 = 16$. Graph the set of solutions of this equation in \mathbb{R}^2 and find a parametrization that traverses the curve once counterclockwise.

Solution. If we let $x = 4 \cos t$ and $y = 4 \sin t$, then $x^2 + y^2 = (4 \cos t)^2 + (4 \sin t)^2 = 16$. More-
over, as \(t \) increases, this parametrization traverses the circle in a counterclockwise fashion:

\[
\begin{align*}
t &= 0 : (x(0), y(0)) = (4, 0) \\
t &= \pi/2 : (x(\pi/2), y(\pi/2)) = (0, 4) \\
t &= \pi : (x(\pi), y(\pi)) = (-4, 0) \\
t &= 3\pi/2 : (x(3\pi/2), y(3\pi/2)) = (0, -4) \\
t &= 2\pi : (x(2\pi), y(2\pi)) = (4, 0)
\end{align*}
\]

To ensure that we travel the curve only once, we restrict \(t \) to the interval \([0, 2\pi)\). So the parametrization is

\[
\begin{cases}
x = 4 \cos t \\ y = 4 \sin t
\end{cases}
\quad \text{when} \quad 0 \leq t \leq 2\pi.
\]

3. 1st and 2nd Derivative Tests:

(a) Use the 2nd Derivative Test to classify the critical numbers of the function \(f(x) = x^4 - 8x^2 + 10 \).

Solution. First, we find the critical points of \(f(x) \).

\[
f'(x) = 4x^3 - 16x.
\]

\(f'(x) = 0 \) when \(4x^3 - 16x = 4x(x^2 - 4) = 4x(x-2)(x+2) = 0 \). Hence \(f''(x) = 0 \) when \(x = 0, x = 2 \) or \(x = -2 \).
Now apply the 2nd Derivative Test to the three critical points. From \(f''(x) = 12x^2 - 16 \), we get:

\(f''(0) = -16 < 0 \), so \(y = f(x) \) is concave down at the point \((0, f(0))\). So a local max occurs at \((0, 10)\).

\(f''(-2) = 32 > 0 \), so \(y = f(x) \) is concave up at the point \((-2, f(-2))\). So a local min occurs at \((-2, -6)\).

\(f''(2) = 32 > 0 \), so \(y = f(x) \) is concave up at the point \((2, f(2))\). So a local min occurs at \((2, -6)\).

\(b) \) Use the 1st Derivative Test and find the extrema of \(h(s) = s^4 + 4s^3 - 1 \).

Solution. First, find the critical points of \(h(s) \).

\[h'(s) = 4s^3 + 12s^2. \]

Then \(h'(s) = 0 \) when \(4s^3 + 12s^2 = 4s^2(s + 3) = 0 \). So \(h'(s) = 0 \) when \(s = 0 \) and \(s = -3 \).

For the 1st Derivative Test, we need to determine if \(h \) is increasing or decreasing on the intervals \((-\infty, -3), (-3, 0) \) and \((0, \infty)\).

On \((-\infty, -3)\) choose any test point (for example, choose \(s = -1000 \)). The sign of \(h'(s) = 4s^3 + 12s^2 < 0 \) on this interval. Hence \(h(s) \) is decreasing on \((-\infty, -3)\).

On \((-3, 0)\) choose any test point (for example, choose \(s = -1 \)). The sign of \(h'(s) = 4s^3 + 12s^2 > 0 \) on this interval. Hence \(h(s) \) is increasing on \((-3, 0)\).

On \((0, \infty)\) choose any test point (for example, choose \(s = 1000 \)). The sign of \(h'(s) = 4s^3 + 12s^2 > 0 \) on this interval. Hence \(h(s) \) is increasing on \((0, \infty)\).

Since at \(s = -3 \) the function changes from decreasing to increasing, the function must have obtained a local min at \(s = -3 \).

At \(s = 0 \), neither a max or a min occurs in the value of \(h \).

\(c) \) Explain why the 2nd Derivative test is unable to classify all the critical numbers of \(h(s) = s^4 + 4s^3 - 1 \).

Solution. When \(s = -3 \), \(h''(-3) = 36 > 0 \). A local min occurs when \(s = -3 \) by the 2nd Derivative Test.

When \(s = 0 \), \(h''(0) = 0 \). The 2nd Derivative Test is inconclusive. The graph of \(y = h(s) \) has no concavity at \((0, h(0))\). Without more information (the 1st Derivative Test), we are unable to identify \((0, h(0))\) as a local max, min or a point of inflection.

4. Consider the function \(f(x) = x^2 e^{-x} \).
(a) Find the best linear approximation to f at $x = 0$.

Solution. Recall that in Calc I and II, the "best linear approximation" is synonymous with the equation of the tangent line or the 1st order Taylor polynomial. Hence, $f'(x) = 2xe^{-x} + x^2(-e^{-x})$.

Since $f'(0) = 0$, the tangent line has no slope at $(0, f(0)) = (0, 0)$. The equation of the tangent line is $y = 0$.

(b) Compute the second-order Taylor polynomial at $x = 0$.

Solution. By definition, the second-order Taylor polynomial at $x = 0$ is

$$T_2(x) = f(0) + \frac{f'(0)}{1!}(x-0) + \frac{f''(0)}{2!}(x-0)^2.$$

Since $f''(x) = 2e^{-x} - 4xe^{-x} + x^2e^{-x}$, we compute that $f''(0) = 2$. Hence

$$T_2(x) = 0 + \frac{0}{1!}(x-0) + \frac{2}{2!}(x-0)^2 = x^2.$$

(c) Explain how the second-order Taylor polynomial at $x = 0$ demonstrates that f must have a local minimum at $x = 0$.

Solution. The second-order Taylor polynomial is the best quadratic approximation to the curve $y = f(x)$ at the point $(0, f(0))$. Since $T_2(x) = x^2$ clearly has a local minimum at $(0, 0)$, and $(0, 0)$ is the location of a critical point of f, then f must also have a local minimum at $(0, 0)$.

5. Consider the integral $\int_0^{\sqrt{3\pi}} 2x \cos(x^2) \, dx$.

(a) Sketch the area in the xy-plane that is implicitly defined by this integral.

Solution. The shadow area in the following picture is the area defined by the integral.
(b) To evaluate, you will need to perform a substitution. Choose a proper \(u = f(x) \) and rewrite the integral in terms of \(u \). Sketch the area in the \(uv \)-plane that is implicitly defined by this integral.

Solution. Let \(u = x^2 \). Then \(du = 2x \, dx \), so the integral becomes

\[
\int_{0}^{\sqrt{3\pi}} 2x \cos(x^2) \, dx = \int_{0}^{3\pi} \cos u \, du.
\]

(c) Evaluate the integral \(\int_{0}^{\sqrt{3\pi}} 2x \cos(x^2) \, dx \).

Solution.

\[
\int_{0}^{\sqrt{3\pi}} 2x \cos(x^2) \, dx = \int_{0}^{3\pi} \cos u \, du = \left[\sin u \right]_{u=0}^{u=3\pi} = \sin(3\pi) - \sin(0) = 0.
\]