Math 234BL1 Practice Exam I

1. Find the domain of the function \(f(x) = \frac{\sqrt{9 - x^2}}{2 - x} \).

2. Write an equation for the line that passes through \((4, 1)\) and perpendicular to the line \(x + 2y = 3 \).

3. Find the indicated limit if it exists or state that the limit does not exist.
 (a) \(\lim_{x \to \infty} \frac{x + 1}{x - 1} \)
 (b) \(\lim_{x \to 2} \frac{\sqrt{x + 7} - 3}{x - 2} \)
 (c) \(\lim_{x \to 1} \frac{2x^2 - x - 1}{x - 1} \)

4. Suppose that \(\lim_{x \to \infty} \frac{bx^2 + 4x + 1}{ax^2 + 3x + 1} = 2 \) and \(\lim_{x \to -\infty} \frac{-2x^2 + 3}{ax^2 + bx + 1} = -3 \). Find the values of \(a \) and \(b \).

5. Suppose that the function \(f(x) \) is defined by
 \[
 f(x) = \begin{cases}
 2x + 2 & \text{if } x < 2 \\
 4 & \text{if } x \geq 2.
 \end{cases}
 \]
 (a) Find \(\lim_{x \to 2^-} f(x) \).
 (b) Find \(\lim_{x \to 2^+} f(x) \).
 (c) Is \(f(x) \) continuous at \(x = 2 \)? Why?

6. (a) State the definition of \(f'(x) \).
 (b) Use the the definition in (a) to compute \(f'(1) \) when \(f(x) = \frac{1}{3x + 2} \).

7. Find the equation of the tangent line to the graph of \(f(x) = \sqrt{x} + \frac{1}{x} \) for \(x = 1 \).

8. (20pts) Differentiate. (Do not simplify)
 (a) \(y = x^3(2x - 5)^2 \)
 (b) \(y = \frac{\sqrt{x^2 + 1}}{2x^2} \)

9. Find the first and the second derivatives.
 \[
 f(t) = (t^2 + 1)^7
 \]
10. When x units of a certain commodity are produced, they can all be sold at a price of p hundred dollars per unit, where

$$p = \frac{x}{x^2 + 1}.$$

(a) Express the revenue $R(x)$ as a function of x.

(b) At what rate is the revenue changing with respect to x when 3 units are produced? Is revenue increasing or decreasing at this level of production?

11. A biologist models the effect of introducing a toxin to a bacterial colony by the function

$$P(t) = \frac{24t + 10}{t^2 + 1}$$

where P is the population of the colony t hours after the toxin is introduced. At what time does the population begin to decrease? By how much does the population increase before it begins to decline?