NonBilipschitz Embeddability into RNP Spaces: Thick Families of Geodesics and Differentiation

Chris Gartland

Department of Mathematics
University of Illinois at Urbana-Champaign

AMS 2019 Fall Central Sectional Meeting
University of Wisconsin-Madison
Overview of Talk

Background
- Banach spaces having the Radon-Nikodým property (RNP space).
- Differentiation based proofs of non-RNP biLipschitz embeddability of metric measure spaces.
- Thick families of geodesics and metric characterization of RNP.

New Results
- A “scale-specific” type of RNP differentiation on metric spaces containing a thick families of geodesics.
- An application to non-biLipschitz embeddability.
- Embedding spaces with true RNP Lipschitz differentiable structure into nonRNP spaces.
A Banach space V has the **Radon-Nikodým property** (RNP) if every Lipschitz map $\mathbb{R} \to V$ is differentiable Lebesgue-almost everywhere. In this case we call V an **RNP space**.
A Banach space V has the **Radon-Nikodým property** (RNP) if every Lipschitz map $\mathbb{R} \to V$ is differentiable Lebesgue-almost everywhere. In this case we call V an **RNP space**.

Examples

- \mathbb{R} - by Lebesgue’s fundamental theorem. As a corollary - all finite dimensional normed spaces.
- Reflexive spaces, such as ℓ^p, L^p, $1 < p < \infty$.
- Separable dual spaces, such as $\ell^1 = c_0^*$.
Background: RNP spaces

Definition (Radon-Nikodým property)

A Banach space V has the **Radon-Nikodým property** (RNP) if every Lipschitz map $\mathbb{R} \to V$ is differentiable Lebesgue-almost everywhere. In this case we call V an **RNP space**.

Examples

- \mathbb{R} - by Lebesgue’s fundamental theorem. As a corollary - all finite dimensional normed spaces.
- Reflexive spaces, such as ℓ^p, L^p, $1 < p < \infty$.
- Separable dual spaces, such as $\ell^1 = c_0^*$.

Nonexamples

- L^1, $t \mapsto \chi_{[0,t]}$, and c_0, $t \mapsto (\sin(nt)/n)_{n=1}^{\infty}$ are nowhere differentiable Lipschitz maps.
Laakso-Lang-Plaut Infinite Diamond Graph, G_{∞}.

Theorem (Cheeger-Kleiner ’09)

1. For any RNP space V and Lipschitz map $f : G_{\infty} \to V$, f is differentiable wrt $\pi_0 : G_{\infty} \to G_0 \subseteq \mathbb{R}$ at μ_{∞}-a.e. $x \in G_{\infty}$, meaning there exists $f'(x) \in \mathbb{R}$ such that

$$f(y) - f(x) = f'(x)(\pi_0(y) - \pi_0(x)) + o(d(y, x)) \quad \text{as } y \to x$$

2. Consequently, G_{∞} does not biLipschitz embed into any RNP space.
Proof of (2).

Suppose V is an RNP space and $f: G_\infty \to V$ is Lipschitz. Pick a point x that is a limit point of $\pi_0^{-1}(\pi_0(x))$ and for which (1) holds.

$f(y) - f(x) = f'(x)(\pi_0(y) - \pi_0(x)) + o(d(y, x))$ as $y \to x$.

Which implies f is not biLipschitz! □
Proof of (2).
Suppose V is an RNP space and $f : G_\infty \to V$ is Lipschitz.
Proof of (2).
Suppose V is an RNP space and $f : G_\infty \to V$ is Lipschitz.

Pick a point x that is a limit point of $\pi_0^{-1}(\pi_0(x))$ and for which (1) holds.

Which implies f is not biLipschitz! \square
Proof of (2).
Suppose \(V \) is an RNP space and \(f : G_\infty \to V \) is Lipschitz.

Pick a point \(x \) that is a limit point of \(\pi_0^{-1}(\pi_0(x)) \) and for which (1) holds.

\[
f(y) - f(x) = f'(x)(\pi_0(y) - \pi_0(x)) + o(d(y, x)) \quad \text{as } y \to x
\]
Proof of (2).
Suppose V is an RNP space and $f : G_\infty \to V$ is Lipschitz.

Pick a point x that is a limit point of $\pi_0^{-1}(\pi_0(x))$ and for which (1) holds.

$$f(y) - f(x) = f'(x)(\pi_0(y) - \pi_0(x)) + o(d(y, x)) \quad \text{as } y \to x$$

$$f(y) - f(x) = 0 + o(d(y, x)) \quad \text{as } \pi_0^{-1}(\pi_0(x)) \ni y \to x$$

Which implies f is not biLipschitz! □
The RNP is preserved under linear isomorphically embeddings. A popular line of research in Banach space geometry is to find purely metric characterizations of such properties.
Background: Thick Families of Geodesics

The RNP is preserved under linear isomorphic embeddings. A popular line of research in Banach space geometry is to find purely metric characterizations of such properties.

- Superreflexivity (Bourgain ’86)
- Rademacher cotype q (Mendel-Naor ’08)
- Uniform p-convexity (Mendel-Naor ’13)
The RNP is preserved under linear isomorphic embeddings. A popular line of research in Banach space geometry is to find purely metric characterizations of such properties.

- Superreflexivity (Bourgain '86)
- Rademacher cotype q (Mendel-Naor ’08)
- Uniform p-convexity (Mendel-Naor ’13)

Theorem (Ostrovskii ’14a)

A Banach space V does not have the RNP if and only if it contains a biLipschitz copy of a thick family of geodesics.

Proof of \iff is very natural, and does not use differentiation theory of Cheeger-Kleiner ’09. Ostrovskii directly constructs an L_∞-bounded, L^1-divergent martingale, which is equivalent to nonRNP.
Definition (Ostrovskii '14a)

Let (X, d) be a metric space, $u, v \in X$, and Γ a family of geodesics connecting u to v. Γ is thick if there is an $\alpha > 0$ such that

\[\text{for any } \gamma \in \Gamma \text{ and points } 0 = t_0 < t_1 < ... < t_k = d(u, v), \]

there is a superset of points $0 = t'_0 < t'_1 < ... < t'_{k'} = d(u, v)$ and another geodesic $\tilde{\gamma} \in \Gamma$ with $\gamma(t'_i) = \tilde{\gamma}(t'_i)$ and

\[\sum_{i=1}^{k'} \max_{t \in [t'_i - 1, t'_i]} d(\gamma(t), \tilde{\gamma}(t)) \geq \alpha. \]
Background: Thick Families of Geodesics

Definition (Ostrovskii ’14a)

Let \((X, d)\) be a metric space, \(u, v \in X\), and \(\Gamma\) a family of geodesics connecting \(u\) to \(v\). \(\Gamma\) is \textbf{thick} if there is an \(\alpha > 0\) such that for any \(\gamma \in \Gamma\) and points \(0 = t_0 < t_1 < \ldots < t_k = d(u, v)\), there is a superset of points \(0 = t'_0 < t'_1 < \ldots < t'_k' = d(u, v)\) and another geodesic \(\tilde{\gamma} \in \Gamma\) with \(\gamma(t'_i) = \tilde{\gamma}(t'_i)\) and \(\sum_{i=1}^{k'} \max_{t \in [t'_i - 1, t'_i]} d(\gamma(t), \tilde{\gamma}(t)) \geq \alpha\).
Definition (Ostrovskii ’14a)

Let \((X, d)\) be a metric space, \(u, v \in X\), and \(\Gamma\) a family of geodesics connecting \(u\) to \(v\). \(\Gamma\) is **thick** if there is an \(\alpha > 0\) such that for any \(\gamma \in \Gamma\) and points \(0 = t_0 < t_1 \ldots t_k = d(u, v)\),
Definition (Ostrovskii ’14a)

Let \((X, d)\) be a metric space, \(u, v \in X\), and \(\Gamma\) a family of geodesics connecting \(u\) to \(v\). \(\Gamma\) is **thick** if there is an \(\alpha > 0\) such that for any \(\gamma \in \Gamma\) and points \(0 = t_0 < t_1 < \ldots t_k = d(u, v)\), there is a superset of points \(0 = t'_0 < t'_1 < \ldots t'_k' = d(u, v)\) and another geodesic \(\tilde{\gamma} \in \Gamma\) with \(\gamma(t'_{i+1}) = \tilde{\gamma}(t'_{i+1})\) and \(\sum_{i=1}^{k'} \max_{t \in [t'_i, t'_{i+1})} d(\gamma(t), \tilde{\gamma}(t)) \geq \alpha\).
Definition (Ostrovskii ’14a)

Let \((X, d)\) be a metric space, \(u, v \in X\), and \(\Gamma\) a family of geodesics connecting \(u\) to \(v\). \(\Gamma\) is **thick** if there is an \(\alpha > 0\) such that for any \(\gamma \in \Gamma\) and points \(0 = t_0 < t_1 < \ldots t_k = d(u, v)\), there is a superset of points \(0 = t'_0 < t'_1 < \ldots t'_{k'} = d(u, v)\) and another geodesic \(\tilde{\gamma} \in \Gamma\) with \(\gamma(t'_i) = \tilde{\gamma}(t'_i)\) and

\[
\sum_{i=1}^{k'} \max_{t \in [t'_{i-1}, t'_i]} d(\gamma(t), \tilde{\gamma}(t)) \geq \alpha.
\]
Example 1:

\[
\begin{align*}
G_0 & \rightarrow G_1 \\
& \quad \pi_0 \\
& \quad \pi_1 \\
& \quad \pi_2 \\
& \cdots
\end{align*}
\]
Example 1:

\[G_0 \rightarrow G_1 \rightarrow G_2 \rightarrow G_\infty \]

\[\pi_0 \rightarrow \pi_1 \rightarrow \pi_2 \rightarrow \cdots \]

Example 2:
Non-quasiconvex deformation of diamond graphs. Replace edges with increasingly cuspidated diamonds.
Background: Thick Families of Geodesics

- Natural followup question to Ostrovskii’s theorem: Does the biLipschitz containment of a thick family of geodesics characterize geodesic metric spaces nonembeddable into RNP spaces, like it does for Banach spaces?

- No, Heisenberg group (H) is a counterexample (Ostrovskii '14b).

- H equipped with Carnot-Caratheodory metric does not biLipschitz embed into any RNP space (Cheeger-Kleiner '06, Lee-Naor '05, Semmes '96, Pansu '89).

- For $p > 0$, call a metric space (X, d) p-convex if there is a quasimetric ρ equivalent to d satisfying

$$\rho(w, y)^{p/2} + \rho(z, y)^{p/2} + \rho(x, y)^p - \left(\rho(w, x)^{p/2} - \rho(z, x)^{p/2}\right)^p \gtrsim \rho(w, z)^p$$

for all $w, x, y, z \in X$.

- H is 8-convex (Li '14). Later, H is 4-convex (Li '16).

- p-convex metric spaces do not contain biLipschitz copies of thick families of geodesics (Ostrovskii '14b).
Background: Thick Families of Geodesics

- Natural followup question to Ostrovskii’s theorem: Does the biLipschitz containment of a thick family of geodesics characterize geodesic metric spaces nonembeddable into RNP spaces, like it does for Banach spaces?
- No, Heisenberg group (\(\mathbb{H}\)) is counterexample (Ostrovskii ’14b).
Background: Thick Families of Geodesics

- Natural followup question to Ostrovskii’s theorem: Does the biLipschitz containment of a thick family of geodesics characterize geodesic metric spaces nonembeddable into RNP spaces, like it does for Banach spaces?
- No, Heisenberg group (\mathbb{H}) is counterexample (Ostrovskii ’14b).
- \mathbb{H} equipped with Carnot-Caratheodory metric does not biLipschitz embed into any RNP space (Cheeger-Kleiner ’06, Lee-Naor ’05, Semmes ’96, Pansu ’89).
Background: Thick Families of Geodesics

- Natural followup question to Ostrovskii’s theorem: Does the biLipschitz containment of a thick family of geodesics characterize geodesic metric spaces nonembeddable into RNP spaces, like it does for Banach spaces?
- No, Heisenberg group (\mathbb{H}) is counterexample (Ostrovskii ’14b).
- \mathbb{H} equipped with Carnot-Caratheodory metric does not biLipschitz embed into any RNP space (Cheeger-Kleiner ’06, Lee-Naor ’05, Semmes ’96, Pansu ’89).
- For $p > 0$, call a metric space (X, d) p-convex if there is a quasimetric ρ equivalent to d satisfying

$$\rho(w, y)^p/2 + \rho(z, y)^p/2 + \rho(x, y)^p - (\rho(w, x)/2)^p - (\rho(z, x)/2)^p \gtrsim \rho(w, z)^p$$

for all $w, x, y, z \in X$.
- \mathbb{H} is 8-convex (Li ’14). Later, \mathbb{H} is 4-convex (Li ’16).
- p-convex metric spaces do not contain biLipschitz copies of thick families of geodesics (Ostrovskii ’14b).
Motivating Question

- The proof that \mathbb{H} and the original proof that G_∞ do not embed into any RNP space uses a differentiation method.

- \mathbb{H} does not contain a biLipschitz copy of thick family of geodesics, but do thick families of geodesics satisfy a differentiation theorem?
Motivating Question

The proof that \mathbb{H} and the original proof that G_∞ do not embed into any RNP space uses a differentiation method.

\mathbb{H} does not contain a biLipschitz copy of thick family of geodesics, but do thick families of geodesics satisfy a differentiation theorem?

Yes, but “scale-specific” type of differentiation.
Theorem 1 (G., Preprint)

Let \((X, d)\) be a complete metric space consisting of a thick family of geodesics from \(u\) to \(v\).
New Results

Theorem 1 (G., Preprint)

Let \((X, d)\) be a complete metric space consisting of a thick family of geodesics from \(u\) to \(v\). Then there is a compact subset \(Y \subseteq X\), a Borel probability measure \(\mu\) on \(Y\), and a sequence of scales \(r_i(x) \downarrow 0\) for each \(x \in Y\) such that for any RNP space \(V\), Lipschitz \(f: Y \rightarrow V\), and \(\mu\)-a.e. \(x \in Y\), \(\exists! f'(x) \in V\) such that for any \(R \geq 1\), \[
\sup_{y \in B_{R \cdot r_i(x)}(x)} \|f(y) - f(x) - f'(x)(\pi(y) - \pi(x))\| = o(r_i(x)) \quad \text{as} \quad i \to \infty
\]
where \(\pi\) is the canonical map \(X \rightarrow [0, d(u, v)]\).

The scales \(r_i(x)\) can be chosen so that the fiber \(\pi^{-1}(\pi(x_0))\) contains points \(y_i\) with \(d(y_i, x) \sim r_i(x)\) for infinitely many \(i\) for a \(\mu\)-positive set of \(x\) (this is enough to run the argument for nonembeddability).
Theorem 1 (G., Preprint)

Let \((X, d)\) be a complete metric space consisting of a thick family of geodesics from \(u\) to \(v\). Then there is a compact subset \(Y \subseteq X\), a Borel probability measure \(\mu\) on \(Y\), and a sequence of scales \(r_i(x) \downarrow 0\) for each \(x \in Y\) such that for any RNP space \(V\), Lipschitz \(f: Y \to V\), and \(\mu\)-a.e. \(x \in Y\), there exists \(f'(x) \in V\) such that for any \(R \geq 1\),

\[
sup_{y \in B_{R} \cdot r_i(x)} \| f(y) - f(x) - f'(x)(\pi(y) - \pi(x))\| = o(r_i(x)) \quad \text{as} \quad i \to \infty
\]

where \(\pi\) is the canonical map \(X \to [0, d(u,v)]\). The scales \(r_i(x)\) can be chosen so that the fiber \(\pi^{-1}(\pi(x))\) contains points \(y_i\) with \(d(y_i, x) \sim r_i(x)\) for infinitely many \(i\) for a \(\mu\)-positive set of \(x\) (this is enough to run the argument for nonembeddability).
New Results

Theorem 1 (G., Preprint)

Let \((X, d)\) be a complete metric space consisting of a thick family of geodesics from \(u\) to \(v\). Then there is a compact subset \(Y \subseteq X\), a Borel probability measure \(\mu\) on \(Y\) and a sequence of scales \(r_i(x) \searrow 0\) for each \(x \in Y\).
Theorem 1 (G., Preprint)

Let \((X, d)\) be a complete metric space consisting of a thick family of geodesics from \(u\) to \(v\). Then there is a compact subset \(Y \subseteq X\), a Borel probability measure \(\mu\) on \(Y\) and a sequence of scales \(r_i(x) \downarrow 0\) for each \(x \in Y\) such that for any RNP space \(V\), Lipschitz \(f : Y \to V\), and \(\mu\)-a.e. \(x \in Y\),

\[
\sup_{y \in B_{r_i(x)}(x)} \|f(y) - f(x) - f'(x)(\pi(y) - \pi(x))\| = o(r_i(x)) \quad \text{as} \quad i \to \infty
\]

where \(\pi\) is the canonical map \(X \to [0, d(u, v)]\). The scales \(r_i(x)\) can be chosen so that the fiber \(\pi^{-1}(\pi(x_0))\) contains points \(y_i\) with \(d(y_i, x) \sim r_i(x)\) for infinitely many \(i\) for a \(\mu\)-positive set of \(x\) (this is enough to run the argument for nonembeddability).
Theorem 1 (G., Preprint)

Let \((X, d)\) be a complete metric space consisting of a thick family of geodesics from \(u\) to \(v\). Then there is a compact subset \(Y \subseteq X\), a Borel probability measure \(\mu\) on \(Y\) and a sequence of scales \(r_i(x) \downarrow 0\) for each \(x \in Y\) such that for any RNP space \(V\), Lipschitz \(f : Y \to V\), and \(\mu\)-a.e. \(x \in Y\), \(\exists! f'(x) \in V\) such that for any \(R \geq 1\),

\[
\sup_{y \in B_{R \cdot r_i(x)}(x)} \|f(y) - f(x) - f'(x)(\pi(y) - \pi(x))\| = o(r_i(x)) \text{ as } i \to \infty
\]
New Results

Theorem 1 (G., Preprint)

Let (X, d) be a complete metric space consisting of a thick family of geodesics from u to v. Then there is a compact subset $Y \subseteq X$, a Borel probability measure μ on Y and a sequence of scales $r_i(x) \searrow 0$ for each $x \in Y$ such that for any RNP space V, Lipschitz $f : Y \to V$, and μ-a.e. $x \in Y$, $\exists! f'(x) \in V$ such that for any $R \geq 1$,

$$\sup_{y \in B_{R \cdot r_i(x)}(x)} \| f(y) - f(x) - f'(x)(\pi(y) - \pi(x)) \| = o(r_i(x)) \text{ as } i \to \infty$$

where π is the canonical map $X \to [0, d(u, v)]$.
New Results

Theorem 1 (G., Preprint)

Let \((X, d)\) be a complete metric space consisting of a thick family of geodesics from \(u\) to \(v\). Then there is a compact subset \(Y \subseteq X\), a Borel probability measure \(\mu\) on \(Y\) and a sequence of scales \(r_i(x) \downarrow 0\) for each \(x \in Y\) such that for any RNP space \(V\), Lipschitz \(f : Y \to V\), and \(\mu\)-a.e. \(x \in Y\), \(\exists! f'(x) \in V\) such that for any \(R \geq 1\),

\[
\sup_{y \in B_{R \cdot r_i(x)}(x)} \| f(y) - f(x) - f'(x)(\pi(y) - \pi(x))\| = o(r_i(x)) \quad \text{as } i \to \infty
\]

where \(\pi\) is the canonical map \(X \to [0, d(u, v)]\).

The scales \(r_i(x)\) can be chosen so that the fiber \(\pi^{-1}(\pi(x_0))\) contains points \(y_i\) with \(d(y_i, x) \sim r_i(x)\) for infinitely many \(i\) for a \(\mu\)-positive set of \(x\) (this is enough to run the argument for nonembeddability).
New Results

- If a metric space embeds into an RNP space (Ost ’14a) or is p-convex (Ost ’14b), then it does not contain a biLipschitz copy of a thick family of geodesics.

H does not embed into any RNP space, and ℓ_1 is not p-convex, so $H \times \ell_1$ satisfies neither hypothesis.

Corollary to Theorem 1 (G., Preprint)

$H \times \ell_1$ does not contain a biLipschitz copy of a thick family of geodesics (apply differentiation argument to each component).

Theorem 2 (G., Preprint)

In any nonRNP Banach space, one can find a biLipschitz copy of a thick family of geodesics that satisfies a true “general-scale” differentiation theorem, like G_∞.

Chris Gartland (Department of Mathematics University of Illinois at Urbana-Champaign)
New Results

- If a metric space embeds into an RNP space (Ost '14a) or is p-convex (Ost '14b), then it does not contain a biLipschitz copy of a thick family of geodesics.

- \mathbb{H} does not embed into any RNP space, and ℓ_1 is not p-convex, so $\mathbb{H} \times \ell_1$ satisfies neither hypothesis.

Corollary to Theorem 1 (G., Preprint)

$\mathbb{H} \times \ell_1$ does not contain a biLipschitz copy of a thick family of geodesics (apply differentiation argument to each component).
New Results

- If a metric space embeds into an RNP space (Ost ’14a) or is \(p \)-convex (Ost ’14b), then it does not contain a biLipschitz copy of a thick family of geodesics.
- \(\mathbb{H} \) does not embed into any RNP space, and \(\ell^1 \) is not \(p \)-convex, so \(\mathbb{H} \times \ell^1 \) satisfies neither hypothesis.

Corollary to Theorem 1 (G., Preprint)

\(\mathbb{H} \times \ell^1 \) does not contain a biLipschitz copy of a thick family of geodesics (apply differentiation argument to each component).

Theorem 2 (G., Preprint)

In any nonRNP Banach space, one can find a biLipschitz copy of a thick family of geodesics that satisfies a true “general-scale” differentiation theorem, like \(G_\infty \).
These differentiation methods even prove non-local biLipschitz embeddability (at least for separable metric spaces).
These differentiation methods even prove non-local biLipschitz embeddability (at least for separable metric spaces).

Question: Are there any nonlocal obstructions to biLipschitz embeddability into RNP spaces?

More specifically, if every point of a complete, separable metric space has a neighborhood which biLipschitz embeds into some RNP space (which can depend on the point), does the entire metric space biLipschitz embed into some RNP space?
References

- Bourgain '86 *The metrical interpretation of superreflexivity in Banach spaces.*
- Cheeger-Kleiner '06 *On the differentiability of Lipschitz maps from metric measure spaces to Banach spaces.*
- Cheeger-Kleiner '09 *Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon–Nikodym Property.*
- Gartland Preprint *Thick Families of Geodesics and Differentiation.*
- Lee-Naor '05 *L_p metrics on the Heisenberg group and the Goemans-Linial conjecture.*
- Li '14 *Coarse differentiation and quantitative nonembeddability for Carnot groups.*
- Li '16 *Markov convexity and nonembeddability of the Heisenberg group.*
References

- Mendel-Naor '08 *Metric Cotype.*
- Mendel-Naor '13 *Markov convexity and local rigidity of distorted metrics.*
- Pansu '89 *Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un.*
- Ostrovskii '14a *Radon-Nikóým property and thick families of geodesics.*
- Ostrovskii '14b *Metric spaces nonembeddable into Banach spaces with the Radon-Nikodým property and thick families of geodesics.*
- Semmes '96 *On the nonexistence of bi-Lipschitz parameterizations and geometric problems about A_∞-weights.*