Is it possible to fly out of the seat of a Ferris wheel that is rotating at a constant speed?

Suppose the Ferris wheel is 10m in radius, and spins at a constant rate. What does that tell us about $\frac{d^2\Theta}{dt^2}$?

Find an equation relating Θ and h.

Take two derivatives using implicit differentiation. The result should have a $\cos \Theta$, a $\sin \Theta$, a $\frac{d^2\Theta}{dt^2}$, a $\frac{d\Theta}{dt}$, and a $\frac{dh}{dt^2}$.

Since we want the rider to fly out, we need $\frac{d^2h}{dt^2} = -10 \text{ m/s}^2$. Is this going to happen easiest at $\Theta = \frac{\pi}{2}$ or at $\Theta = \pi$? Use the appropriate Θ and solve for $\frac{d\Theta}{dt}$.