Math 115 Spring 2011

Written Homework 5 Solutions

1. Evaluate each series.
 (a) \(4 + 7 + 10 + \ldots + 55\)

Solution: We note that the associated sequence, 4, 7, 10, \ldots, 55 appears to be an arithmetic sequence. If the sequence is arithmetic, then the common difference is \(d = 7 - 4 = 10 - 7 = 3\). Then the candidate for the generating function is

\[a(n) := 4 + (n - 1)3. \]

To prove that the associated sequence is arithmetic, we need to show that 55 is a term generated by the function \(a(n)\). That is, there is some \(N\) where \(a(N) = 55\).

\[
\begin{align*}
 a(N) &= 55 \\
 4 + (N - 1)3 &= 55 \\
 3N + 1 &= 55 \\
 3N &= 54 \\
 N &= 18
\end{align*}
\]

Since \(N = 18\) is a natural number, the series is an arithmetic series.

Using the summation formula for a finite arithmetic series,

\[
S = N \left(\frac{a_1 + a_N}{2} \right) = 18 \left(\frac{4 + 55}{2} \right) = 9(59) = 531.
\]

(b) The first and last terms of summation are 8 and \(\frac{1}{512}\), respectively and the common ratio between each term is \(\frac{1}{4}\).

Solution: Here we are given that the series is a geometric series. The generating function for the associated sequence is \(b(n) := 8 \left(\frac{1}{4} \right)^{n-1}\). For a geometric series, we have two forms of the summation formula, \(S = \frac{a_{N+1} - a_1}{r - 1}\) and \(S = a_1 \left(\frac{r^N - 1}{r - 1} \right)\) where \(N\) is the number of
terms in the series. While we could find \(N \) using the generating function, since we know the first and last terms in the series, we don’t need to. Here \(b_1 = 8 \) and \(b_N = \frac{1}{512} \).

\[
S = \frac{b_{N+1} - b_1}{r - 1} = \frac{(b_N)r - b_1}{r - 1} = \frac{(\frac{1}{512})(\frac{1}{4}) - 8}{\frac{1}{4} - 1} = \frac{\frac{1}{2048} - 8}{-\frac{3}{4}} = -\frac{4}{3} \left(\frac{1}{2048} - 8 \right)
\]
\[
= -\frac{4}{3} \left(\frac{1}{2048} - \frac{16384}{2048} \right) = -\frac{4}{3} \left(-\frac{16383}{2048} \right) = \frac{65532}{6144} = \frac{5461}{512}
\]

(c) The sum of \(-3 + 6 - 12 + 24 - \ldots\) where the associated sequence has 21 terms.

Solution: We note that the associated sequence, \(-3, 6, -12, 24, \ldots\) is a geometric sequence.

\[
r = \frac{6}{-3} = -\frac{12}{-6} = \frac{24}{-12} = -2
\]

The generating function for the sequence is \(c(n) := (-3)(-2)^{n-1} \). We are given that the series has 21 terms. Here we use the other formulation for the sum of a finite geometric series.

\[
S = a_1 \left(\frac{r^N - 1}{r - 1} \right) = (-3) \left(\frac{(-2)^{21} - 1}{(-2) - 1} \right) = (-2)^{21} - 1.
\]

(d) The sum of \(10, \frac{15}{2}, 5, \frac{5}{2}, \ldots\) where the associated sequence has 30 terms.

Solution: This is an arithmetic sequence:

\[
d = \frac{15}{2} - 10 = 5 - \frac{15}{2} = \frac{5}{2} - 5 = -\frac{5}{2}.
\]

Then \(d(n) := 10 + (n - 1) \left(-\frac{5}{2} \right) \) is the generating function for the associated sequence. We are given that \(N = 30 \). Then

\[
S = 30 \left(\frac{a_1 + a_{30}}{2} \right) = 30 \left(\frac{10 + [10 + (30 - 1) \left(-\frac{5}{2} \right)]}{2} \right) = 30 \left(\frac{20 + 29 \left(-\frac{5}{2} \right)}{2} \right)
\]
\[
= 15 \left(20 - \frac{145}{2} \right) = 15 \left(-\frac{105}{2} \right) = -\frac{1575}{2}.
\]
2. How many terms of the sequence \(-5, -1, 3, \ldots\) must be added to give a sum of 400?

Solution: We need to first determine if this sequence is arithmetic or geometric. Since

\[-1 - (-5) = 3 - (-1) = 4,
\]

we assume that the sequence is arithmetic with a common difference \(d = 4\). Then, the generating function of the sequence is \(a(n) := -5 + (n - 1)(4)\). The summation formula for the associated \(N\)-term arithmetic series is

\[S = N \left(\frac{a_1 + a_N}{2} \right) = N \left(\frac{-5 + 5 + (N - 1)(4)}{2} \right).\]

We are given that the summation \(S = 400\). We need to determine \(N\).

\[
400 = N \left(\frac{-5 + 5 + (N - 1)(4)}{2} \right)
= N \left(\frac{-10 + 4N - 4}{2} \right)
= N \left(\frac{-14 + 4N}{2} \right)
= N(-7 + 2N)
= -7N + 2N^2
0 = 2N^2 - 7N - 400
\]

Factor the above quadratic equation or use the quadratic formula to solve for \(N\).

\[
N = \frac{-(-7) \pm \sqrt{(-7)^2 - 4(2)(-400)}}{2(2)}
= \frac{7 \pm 57}{2} = 16 \text{ or } -\frac{25}{2}.
\]

Now, both of these candidates for \(N\) can not be correct. Recall that \(N\) is a number of terms in a sequence / series. \(N\) must be a natural number. Thus,

\[N = 16\]

is the only solution.
3.

(a) Use a series to find the sum of the first 200 odd, positive integers.

Solution: We know from lecture that the sequence that generates the odd integer is odd\((n) := 1 + (n - 1)2 = -1 + 2n.\) The series here is

\[1 + 3 + 5 + \ldots + \text{odd}(200) = 1 + 3 + 5 + \ldots + [-1 + 2(100)] = 1 + 3 + 5 + \ldots + 399.\]

The summation formula for this arithmetic series is

\[S = 200 \left(\frac{1 + 399}{2}\right) = 40000.\]

(b) Use a series to find the sum of all positive integers less than 200 that are multiples of 7.

Solution: The series here is

\[7 + 14 + 21 + 28 + \ldots + 7N\]

where \(N\) is the largest natural number where \(7N \leq 200.\)

\[N \leq \frac{200}{7} = 28 + \frac{4}{7}.\]

Hence, \(N = 28.\)

We notice that the associated sequence is arithmetic: \(b(n) := 7n.\) The summation formula for this arithmetic series is

\[S = 28 \left(\frac{7 + 7(28)}{2}\right) = 14(201) = 2814.\]
4. How many terms of the sequence generated by the function \(a_n := 4(3)^{n-1} \) must be added to give a sum of 1456?

Solution: The associated series is clearly geometric. The summation formula for an \(N \) term geometric series is

\[
S = a_1 \left(\frac{1 - r^N}{1 - r} \right)
\]

\[
1456 = 4 \left(\frac{1 - 3^N}{1 - 3} \right)
\]

\[
\frac{364}{2} = 1 - 3^N
\]

\[
-728 = 1 - 3^N
\]

\[
-729 = -3^N
\]

\[
729 = 3^N
\]

\[
3^6 = 3^N
\]

\[
N = 6
\]

There are 6 terms in the associated series.

5. If \(10^{a_1}, 10^{a_2}, 10^{a_3}, ..., 10^{a_n} \) is a geometric sequence, what can you determine about the sequence \(a_1, a_2, a_3, ..., a_n \)?

Solution: We are given that \(10^{a_1}, 10^{a_2}, 10^{a_3}, ..., 10^{a_n} \) is a geometric sequence. Thus,

\[
r = \frac{10^{a_2}}{10^{a_1}} = \frac{10^{a_3}}{10^{a_2}} = \frac{10^{a_4}}{10^{a_3}} = \cdots = \frac{10^{a_n}}{10^{a_{n-1}}}
\]

\[
= 10^{a_2-a_1} = 10^{a_3-a_2} = 10^{a_4-a_3} = \cdots = 10^{a_n-a_{n-1}}
\]

For the numbers to all be equal, the exponent on the base 10 must be the same. That is, there is some exponent \(p \) where

\[
p = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = \cdots = a_n - a_{n-1}.
\]

The equation \(a_n - a_{n-1} = p \) for all \(n \) is the definition of an arithmetic sequence with common difference \(p \). Hence, the sequence \(a_1, a_2, a_3, ..., a_n \) must be an arithmetic sequence.
6. Write \(\sum_{k=3}^{9} |2\pi - k| \) as an expanded sum and compute the sum.

Solution: \(\sum_{k=3}^{9} |2\pi - k| = |2\pi - 3| + |2\pi - 4| + |2\pi - 5| + |2\pi - 6| + |2\pi - 7| + |2\pi - 8| + |2\pi - 9| \).

Recall that if a number \(x \) is negative then \(|x| = -x \). Additionally, recall that \(\pi \approx 3.14159 \ldots \) Hence \(6 < 2\pi < 7 \).

Thus, \(|2\pi - k| = 2\pi - k \) when \(k \leq 6 \) and \(|2\pi - k| = -(2\pi - k) \), when \(k > 6 \). Then,

\[
\sum_{k=3}^{9} |2\pi - k| = (2\pi - 3) + (2\pi - 4) + (2\pi - 5) + (2\pi - 6) + [(2\pi - 7)] + [-(2\pi - 8)] + [-(2\pi - 9)] \\
= 2\pi - 3 + 2\pi - 4 + 2\pi - 5 + 2\pi - 6 - (2\pi - 7) - (2\pi - 8) - (2\pi - 9) \\
= 2\pi - 3 + 2\pi - 4 + 2\pi - 5 + 2\pi - 6 - 2\pi + 7 - 2\pi + 8 - 2\pi + 9 \\
= 2\pi - 3 - 4 - 5 - 6 + 7 + 8 + 9 \\
= 2\pi + 6
\]
7. Write each of the following using summation notation.
(a) \[a_1(b_1)^2 + a_2(b_2)^3 + a_3(b_3)^4 + \ldots + a_{10}(b_{10})^{11} \]

\textbf{Solution:} \[\sum_{i=1}^{10} a_i(b_i)^{i+1}. \]

(b) The sum of all three digit positive even integers.

\textbf{Solution:} This is the series \(100 + 102 + 104 + \ldots + 996 + 998\). This associated sequence is arithmetic and is generated by the function \(b(n) := 100 + (n - 1)2\). Then the summation is \(\sum_{n=1}^{N} b(n)\). We need to know how many terms are in the series in order to define the upper-bound on the index in our summation notation. Note that we use \(b(N) = 998\) to determine how many terms are in the sequence.

\[998 = 100 + (N - 1)2 \]

\[898 = (N - 1)2 \]

\[449 = N - 1 \]

\[N = 450 \]

Then the series can be written in the form \(\sum_{n=1}^{450} [100 + (n - 1)2]\).

Remark: An alternative method would result in the answer \(\sum_{n=50}^{499} 2n\). This is also correct.

(c) \[6 - 2 + \frac{2}{3} - \frac{2}{9} + \ldots + \frac{2}{243} \]

\textbf{Solution:} Again, in order to write this as a summation, we need a generating function for the associate sequence. We are lead to believe that the associate sequence is geometric because \(r = \frac{-2}{6} = -\frac{1}{3}\). To be certain that this series is a geometric series, we need to show that the term \(\frac{2}{243}\) is a term in the sequence generated by \(c(n) := 6 \left(-\frac{1}{3} \right)^{n-1}\). (If it is, in this process we will
determine how many numbers are in this sequence.)

\[
c(N) = \frac{2}{243}
\]

\[
6 \left(-\frac{1}{3} \right)^{N-1} = \frac{2}{243}
\]

\[
\left(-\frac{1}{3} \right)^{N-1} = \frac{1}{729}
\]

\[
\left(-\frac{1}{3} \right)^{N-1} = \left(-\frac{1}{3} \right)^6
\]

\[
N - 1 = 6
\]

\[
N = 7
\]

Thus,

\[
6 - 2 + \frac{2}{3} - \frac{2}{9} + \ldots + \frac{2}{243} = \sum_{n=1}^{7} 6 \left(-\frac{1}{3} \right)^{n-1}
\]
8. If \(\sum_{b=2}^{4} (a^2b - ab) = \sum_{c=3}^{5} (ac + 6) \), determine \(a \).

Solution: Here we expand and simplify.

\[
\sum_{b=2}^{4} (a^2b - ab) = \sum_{c=3}^{5} (ac + 6)
\]

\[
(a^22 - a2) + (a^23 - a3) + (a^24 - a4) = (a3 + 6) + (a4 + 6) + (a5 + 6)
\]

\[
2a^2 - 2a + 3a^2 - 3a + 4a^2 - 4a = 3a + 6 + 4a + 6 + 5a + 6
\]

\[
9a^2 - 9a = 12a + 18
\]

\[
9a^2 - 21a - 18 = 0
\]

\[
3(a^2 - 7a - 6) = 0
\]

\[
3(a - 3)(3a + 2) = 0
\]

Here, the summations will be equal when \(a \) is either \(a = 3 \) or \(a = -\frac{2}{3} \).
9. What is the sum of the series \(\sum_{k=1}^{n} (-1)^k \), if \(n \) is odd? if \(n \) is even?

Solution: Try some values for \(n \).

\[
\sum_{k=1}^{1} (-1) = -1 \\
\sum_{k=1}^{2} (-1) = (-1) + (-1)^2 = -1 + 1 = 0 \\
\sum_{k=1}^{3} (-1) = (-1) + (-1)^2 + (-1)^3 = -1 + 1 - 1 = -1 \\
\sum_{k=1}^{4} (-1) = (-1) + (-1)^2 + (-1)^3 + (-1)^4 = -1 + 1 - 1 + 1 = 0 \\
\sum_{k=1}^{5} (-1) = (-1) + (-1)^2 + (-1)^3 + (-1)^4 + (-1)^5 = -1 + 1 - 1 + 1 - 1 = -1
\]

At this point, we recognize the pattern. If \(n \) is an even number, we can form \(n/2 \) pairs of \(-1 + 1 = 0\) and the summation will always be 0. If \(n \) is an odd number, the pairs made by the first \(n - 1 \) terms will cancel and we will be left with a single \(-1\). Hence, the summation equals -1 when \(n \) is odd.
10.

(a) Write \(\sum_{k=1}^{10} \frac{1}{k(k+1)} \) as an expanded sum and compute the sum.

Solution:
\[
\sum_{k=1}^{10} \frac{1}{k(k+1)} = \frac{1}{1(2)} + \frac{1}{2(3)} + \frac{1}{3(4)} + \frac{1}{4(5)} + \frac{1}{5(6)} + \frac{1}{6(7)} + \frac{1}{7(8)} + \frac{1}{8(9)} + \frac{1}{9(10)} + \frac{1}{10(11)}
\]
\[
= \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{25} + \frac{1}{30} + \frac{1}{42} + \frac{1}{72} + \frac{1}{90} + \frac{1}{110}
\]
\[
= \frac{10}{11}
\]

(b) The summation \(\sum_{k=1}^{10} \left(\frac{1}{k} - \frac{1}{k+1} \right) \) is an example of a *telescoping sum*. Expand and compute this sum. What property of the summation makes this a “telescoping sum”?

Solution:
\[
\sum_{k=1}^{10} \left(\frac{1}{k} - \frac{1}{k+1} \right) = \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \left(\frac{1}{4} - \frac{1}{5} \right) + \left(\frac{1}{5} - \frac{1}{6} \right) + \left(\frac{1}{6} - \frac{1}{7} \right) + \left(\frac{1}{7} - \frac{1}{8} \right) + \left(\frac{1}{8} - \frac{1}{9} \right) + \left(\frac{1}{9} - \frac{1}{10} \right) + \left(\frac{1}{10} - \frac{1}{11} \right)
\]
\[
= 1 - \frac{1}{11}
\]
\[
= \frac{10}{11}
\]

The property that makes this a “telescoping sum” is the fact that it collapses down to a much smaller sum (just as a telescope can expand and collapse).

(c) Let \(N \) be a large positive number. Evaluate \(\sum_{k=1}^{N} \left(\frac{1}{k} - \frac{1}{k+1} \right) \).

Solution:
\[
\sum_{k=1}^{N} \left(\frac{1}{k} - \frac{1}{k+1} \right) = \left(\frac{1}{1} - \frac{1}{2} \right) + \left(\frac{1}{2} - \frac{1}{3} \right) + \left(\frac{1}{3} - \frac{1}{4} \right) + \ldots + \left(\frac{1}{N} - \frac{1}{N+1} \right)
\]
\[
= 1 - \frac{1}{N+1} \text{ or } \frac{N}{1+N}
\]
(d) Show that \(\frac{1}{k} - \frac{1}{k+1} = \frac{1}{k(k+1)} \).

Solution:
\[
\frac{1}{k} - \frac{1}{k+1} = \frac{k+1}{k(k+1)} - \frac{k}{k(k+1)} = \frac{k+1-k}{k(k+1)} = \frac{1}{k(k+1)}
\]

(e) Evaluate \(\sum_{k=1}^{1000} \frac{1}{k(k+1)} \)

Solution:
\[
\sum_{k=1}^{1000} \frac{1}{k(k+1)} = \sum_{k=1}^{1000} \left(\frac{1}{k} - \frac{1}{k+1} \right) = 1 - \frac{1}{1001} = \frac{1000}{1001}
\]