Consider an object of mass \(m \) sliding without friction on a mountain range given by the graph of the function \(y = f(x) \), where \(x = x(t) \) is the horizontal coordinate of the object, and \(t \) is the time variable.

1. Find a second-order differential equation for \(x(t) \) that describes the motion of the object. Hint: Look at the gravitational force \(F_g \) acting on the object. Decompose it into a component \(F_p \) that’s perpendicular to the mountain range and a component \(F_T \) that’s tangent to the mountain. Only one of those two components will have an effect on the object. Decompose this one further, into a horizontal component \(F_H \) and a vertical component \(F_V \). Which of those two components will affect \(x(t) \)? Use Newton’s second axiom to write down a differential equation for \(x(t) \).

2. Recall that for small angles \(\alpha \), we have \(\sin \alpha \approx \alpha \approx \tan \alpha \) and \(\cos \alpha \approx 1 \). Assuming that \(f'(x) \) is small, use these approximations to simplify the differential equation for \(x(t) \).

3. Let \(f(x) = x^2 \). Find the general solution of the simplified equation for this choice of \(f(x) \), then find the solution that satisfies \(x(0) = 0 \) and \(x'(0) = 1 \). What kind of behavior do you expect? Does the solution agree with your expectations?