Problem Set 1

Question 1
(a) Show, by explicitly describing a diffeomorphism, that as a smooth manifold \mathbb{CP}^1 is diffeomorphic to S^2.

(b) Let
\[\Lambda = \{ m\omega_1 + n\omega_2 \mid m, n \in \mathbb{Z} \} \]
be the lattice defined by $\omega_1, \omega_2 \in \mathbb{C}$, and let $T_\Lambda = \mathbb{C}/\Lambda$ be the corresponding torus. Construct an atlas of coordinate charts on T_Λ and hence prove that it is a (compact) one-dimensional complex manifold, i.e. prove that it is a Riemann surface.

Question 2
Let $f(x, y)$ and $g(x, y)$ be polynomials with complex coefficients. Show that the following are equivalent:

- f and g have the same irreducible factors (possibly with different multiplicities)
- There are positive integers m and n such that f divides g^m and g divides f^n.

1
Question 3

(a) Show that if \(f(x, y) \) is a (non-trivial) homogeneous polynomial of degree \(d \) then it factors as a product of linear polynomials

\[
f(x, y) = \prod_{i=1}^{d} (\alpha_i x + \beta_i y)
\]

for some \(\alpha_i, \beta_i \in \mathbb{C} \).

(b) Let \(F(x, y, z) \) be a non-trivial homogeneous polynomial of degree \(d \), and let \(C_F \) be the curve in \(\mathbb{CP}^2 \) defined by \(F(x, y, z) = 0 \). If \(\mathbb{CP}^2 = \mathbb{C}^2 \cup \mathbb{CP}^1 \), where \(\mathbb{CP}^1 \subset \mathbb{CP}^2 \) is the ‘line at infinity’ defined by \(z = 0 \), show that \(C_F \cap \mathbb{CP}^1 \) is either a finite set of points or the entire \(\mathbb{CP}^1 \).

(c) Let \(f(x, y) = y^2 - 2x^2 - xy + 5x \), and let \(C_f = f^{-1}(0) \) be the algebraic curve in \(\mathbb{C}^2 \) defined by \(f \). Let \(C_F \) be the corresponding curve in \(\mathbb{CP}^2 \), i.e. let \(C_F \) be the compactification of \(C_f \) obtained by the usual compactification \(\mathbb{CP}^2 = \mathbb{C}^2 \cup \mathbb{CP}^1 \). Find all the points in \(C_F - C_f \) and hence all the lines in \(\mathbb{C}^2 \) on which the intersection with \(C_f \) has less than two points.