Orthogonal projections and planes in \mathbb{R}^3.

1. Let $u = (2, 4), v = (3, 1),$ and $w = (4, 4)$.

 (a) Find the projections $\text{proj}_v(u)$ and $\text{proj}_v(w)$ of the vectors u and w onto v.

 (b) The orthogonal complement of u with respect to v is the vector

 \[\text{orth}_v(u) = u - \text{proj}_v(u). \]

 Find $\text{orth}_v(u)$ and $\text{orth}_v(w)$. Represent all seven vectors in a figure (the three origi-

 (c) Check that the complements $\text{orth}_v(u)$ and $\text{orth}_v(w)$ are both orthogonal to v.

2. Let $P = (1, 2, 3), Q = (0, 1, 2),$ and $u = (1, 2, 1)$.

 (a) Find the distance from P to the line $t \mathbf{u}$. Hint: What is the closest point to P on this

 (b) Find the distance from P to the line $Q + t \mathbf{u}$. Hint: The distance from P to $Q + t \mathbf{u}$ is

 the same as the distance from which point to the line $t \mathbf{u}$?

3. Let u and v be vectors in \mathbb{R}^2. Set

 \[w = \text{orth}_v(u) = u - \text{proj}_v(u). \]

 Find $\text{proj}_w u$ in terms of $u, v,$ and w.

4. Let $P = (-1, 3, 0)$ and let \mathcal{P} be the plane described by the equation

 \[-2x + y + z = 3.\]

 (a) Find a normal vector n to the plane \mathcal{P}. Hint: First find a normal vector to the plane
 through the origin $-2x + y + z = 0$. How is this normal vector related to n?

 (b) Find a point Q on the plane \mathcal{P}. Check that if R is also a point on \mathcal{P}, then $R - Q$ lies

 on the plane through the origin

 \[-2x + y + z = 0.\]

 In other words, this says that the translate of the plane \mathcal{P} by Q is the plane through

 (c) Find the projection $\text{proj}_n(P - Q)$.

 (d) Use the information from the previous parts to find the distance from P to \mathcal{P}.