Section 16.3 Solutions

1. \(C \) appears to be a smooth curve, and since \(\nabla f \) is continuous, we know \(f \) is differentiable. Then Theorem 2 says that the value of \(\int_C \nabla f \cdot dr \) is simply the difference of the values of \(f \) at the terminal and initial points of \(C \). From the graph, this is \(50 - 10 = 40 \).

2. \(C \) is represented by the vector function \(\mathbf{r}(t) = (t^3 + 1) \mathbf{i} + (t^3 + t) \mathbf{j}, 0 \leq t \leq 1 \), so \(\mathbf{r}'(t) = 3t^2 \mathbf{i} + (3t^2 + 1) \mathbf{j} \). Since \(3t^2 + 1 \neq 0 \), we have \(\mathbf{r}'(t) \neq 0 \), thus \(C \) is a smooth curve. \(\nabla f \) is continuous, and hence \(f \) is differentiable, so by Theorem 2 we have \(\int_C \nabla f \cdot dr = f(\mathbf{r}(1)) - f(\mathbf{r}(0)) = f(2, 2) - f(1, 0) = 9 - 3 = 6 \).

3. \(\partial(2x - 3y)/\partial y = -3 = \partial(-3x + 4y - 8)/\partial x \) and the domain of \(\mathbf{F} \) is \(\mathbb{R}^2 \) which is open and simply connected, so by Theorem 6 \(\mathbf{F} \) is conservative. Thus, there exists a function \(f \) such that \(\nabla f = \mathbf{F} \), that is, \(f_x(x, y) = 2x - 3y \) and \(f_y(x, y) = -3x + 4y - 8 \). But \(f_x(x, y) = 2x - 3y \) implies \(f(x, y) = x^2 - 3xy + g(y) \) and differentiating both sides of this equation with respect to \(y \) gives \(f_y(x, y) = -3x + g'(y) \). Thus \(-3x + 4y - 8 = -3x + g'(y) \) so \(g'(y) = 4y - 8 \) and \(g(y) = 2y^2 - 8y + K \) where \(K \) is a constant. Hence \(f(x, y) = x^2 - 3xy + 2y^2 - 8y + K \) is a potential function for \(\mathbf{F} \).

4. \(\partial(e^x \cos y)/\partial y = -e^x \sin y \), \(\partial(e^x \sin y)/\partial x = e^x \sin y \). Since these are not equal, \(\mathbf{F} \) is not conservative.

5. \(\partial(xy \cos xy + \sin xy)/\partial y = -x^2 y \sin xy + 2x \cos xy = \partial(xy \cos xy)/\partial x \) and the domain of \(\mathbf{F} \) is \(\mathbb{R}^2 \). Hence \(\mathbf{F} \) is conservative, so there exists a function \(f \) such that \(\nabla f = \mathbf{F} \). Then \(f_x(x, y) = x^2 \cos xy \) implies \(f(x, y) = x \sin xy + g(x) \) and \(f_y(x, y) = xy \cos xy + \sin xy + g'(x) \). But \(f_x(x, y) = xy \cos xy + \sin xy \) so \(g(x) = K \) and \(f(x, y) = x \sin xy + K \) is a potential function for \(\mathbf{F} \).

6. (a) \(f_x(x, y) = x^2 \) implies \(f(x, y) = \frac{1}{2}x^3 + g(y) \) and \(f_y(x, y) = 0 + g'(y) \). But \(f_y(x, y) = y^2 \) so \(g'(y) = y^2 \) \(\Rightarrow \) \(g(y) = \frac{1}{2}y^3 + K \). We can take \(K = 0 \), so \(f(x, y) = \frac{1}{2}x^3 + \frac{1}{2}y^3 \).

(b) \(\int_C \mathbf{F} \cdot dr = f(2, 8) - f(-1, 2) = \left(\frac{3}{2} + \frac{32}{2} \right) - \left(-\frac{1}{2} + \frac{8}{2} \right) = 171 \).

7. (a) \(f_x(x, y, z) = yz \) implies \(f(x, y, z) = xyz + g(y, z) \) and so \(f_y(x, y, z) = xz + g_y(y, z) \). But \(f_y(x, y, z) = xz \) so \(g_y(y, z) = 0 \) \(\Rightarrow \) \(g(y, z) = h(z) \). Thus \(f(x, y, z) = xyz + h(z) \) and \(f_z(x, y, z) = xy + h'(z) \). But \(\int_C \mathbf{F} \cdot dr = f(4, 6, 3) - f(1, 0, -2) = 81 - 4 = 77 \).

(b) \(\int_C \mathbf{F} \cdot dr = f(\pi, 0, \pi) - f(0, 0, 0) = 0 - 0 = 0 \).
Section 16.3 Solutions

18. (a) \(f_x(x, y, z) = e^y \) implies \(f(x, y, z) = xe^y + g(y, z) \) and so \(f_y(x, y, z) = xe^y + g_y(y, z) \). But \(f_x(x, y, z) = xe^y \) so \(g_y(y, z) = 0 \) \(\Rightarrow \) \(g(y, z) = h(z) \). Thus \(f(x, y, z) = xe^y + h(z) \) and \(f_x(x, y, z) = 0 + h'(z) \). But
\[f_z(x, y, z) = (z + 1)e^z, \]
so \(h'(z) = (z + 1)e^z \) \(\Rightarrow \) \(h(z) = ze^z + K \) (using integration by parts). Hence
\[f(x, y, z) = xe^y + xe^z \] (taking \(K = 0 \)).

(b) \(r(0) = (0,0,0), r(1) = (1,1,1) \) so \(\int_C \mathbf{F} \cdot d\mathbf{r} = f(1,1,1) - f(0,0,0) = 2e - 0 = 2e. \)

21. \(\mathbf{F}(x, y) = 2y^{3/2} \mathbf{i} + 3x \sqrt{y} \mathbf{j} \), \(W = \int_C \mathbf{F} \cdot d\mathbf{r} \). Since \(\partial (2y^{3/2})/\partial y = 3 \sqrt{y} = \partial (3x \sqrt{y})/\partial x \), there exists a function \(f \) such that \(\nabla f = \mathbf{F} \). In fact, \(f_x(x, y) = 2y^{3/2} \Rightarrow f(x, y) = 2xy^{3/2} + g(y) \Rightarrow f_y(x, y) = 3xy^{1/2} + g'(y) \). But
\[f_y(x, y) = 3x \sqrt{y} \] so \(g'(y) = 0 \) or \(g(y) = K \). We can take \(K = 0 \) \(\Rightarrow \) \(f(x, y) = 2xy^{3/2} \). Thus
\[W = \int_C \mathbf{F} \cdot d\mathbf{r} = f(2,4) - f(1,1) = 2(2)(8) - 2(1) = 30. \]

22. \(\mathbf{F}(x, y) = e^{-y} \mathbf{i} - xe^{-y} \mathbf{j}, W = \int_C \mathbf{F} \cdot d\mathbf{r} \). Since \(\frac{\partial}{\partial y} (e^{-y}) = -e^{-y} = \frac{\partial}{\partial x} (-xe^{-y}) \), there exists a function \(f \) such that
\[\nabla f = \mathbf{F}. \] In fact, \(f_x = e^{-y} \Rightarrow f(x, y) = xe^{-y} + g(y) \Rightarrow f_y = -xe^{-y} + g'(y) \Rightarrow g'(y) = 0 \), so we can take
\[f(x, y) = xe^{-y} \] as a potential function for \(\mathbf{F} \). Thus
\[W = \int_C \mathbf{F} \cdot d\mathbf{r} = f(2,0) - f(0,1) = 2 - 0 = 2. \]

29. \(D = \{ (x, y) \mid x > 0, y > 0 \} \) is the first quadrant (excluding the axes).

(a) \(D \) is open because around every point in \(D \) we can put a disk that lies in \(D \).

(b) \(D \) is connected because the straight line segment joining any two points in \(D \) lies in \(D \).

(c) \(D \) is simply-connected because it's connected and has no holes.

30. \(D = \{ (x, y) \mid x \neq 0 \} \) consists of all points in the \(xy \)-plane except for those on the \(y \)-axis.

(a) \(D \) is open.

(b) Points on opposite sides of the \(y \)-axis cannot be joined by a path that lies in \(D \), so \(D \) is not connected.

(c) \(D \) is not simply-connected because it is not connected.

31. \(D = \{ (x, y) \mid 1 < x^2 + y^2 < 4 \} \) is the annular region between the circles with center \((0, 0)\) and radii 1 and 2.

(a) \(D \) is open.

(b) \(D \) is connected.

(c) \(D \) is not simply-connected. For example, \(x^2 + y^2 = (1.5)^2 \) is simple and closed and lies within \(D \) but encloses points that are not in \(D \). (Or we can say, \(D \) has a hole, so it is not simply-connected.)
32. \(D = \{ (x, y) \mid x^2 + y^2 \leq 1 \text{ or } 4 \leq x^2 + y^2 \leq 9 \} = \) the points on or inside the circle \(x^2 + y^2 = 1 \), together with the points on or between the circles \(x^2 + y^2 = 4 \) and \(x^2 + y^2 = 9 \).

(a) \(D \) is not open because, for instance, no disk with center \((0, 2)\) lies entirely within \(D \).

(b) \(D \) is not connected because, for example, \((0, 0)\) and \((0, 2.5)\) lie in \(D \) but cannot be joined by a path that lies entirely in \(D \).

(c) \(D \) is not simply-connected because, for example, \(x^2 + y^2 = 9 \) is a simple closed curve in \(D \) but encloses points that are not in \(D \).