This is the standard protocol for secure communication using the RSA. Imagine that Bob wants to send a message to Alice. They perform the following steps:

Step 1. Alice generates the keys \((N, e)\) and \(d\). (We will talk more about this step later.)

Step 2. Alice sends the public key \((N, e)\) to Bob.

Step 3. Bob uses the public key \((N, e)\) to encrypt his message \(M\). Denote the result by \(M^*\).

Step 4. Bob sends \(M^*\) to Alice.

Step 5. Alice uses her private key \(d\) to decrypt \(M^*\) and thus uncover \(M\).

Notice that the private key \(d\), necessary for deciphering messages, is *never sent to anybody*: Alice is the only person in the world who knows it!

The RSA has many applications besides just ciphering. For instance, it is widely used for authentication purposes: when you load a website whose address starts with `https://`, your browser uses the RSA to make sure it is the correct website and not a fake. To see how that works, imagine that, a week later, Bob wants to send another message to Alice, but first he wants to make sure it is really her and not an impostor. Here is what he does:

Step 1. Bob picks a random number \(R\) between 0 and \(N - 1\) and encrypts it using Alice’s public key \((N, e)\). Denote the result by \(R^*\).

Step 2. Bob sends \(R^*\) to Alice and asks her to decrypt it.

Step 3. If Alice succeeds, Bob can be sure it is her, because nobody else knows the private key \(d\).

Further reading:

- N. Stephenson (1999). *Cryptonomicon*. This is a pretty awesome book centered around cryptography!