Vocabulary:
- bit, byte;
- binary codes.

There are 2^n strings of n bits:

The **Huffman code** is often used for data compression. The main idea is that symbols that occur with higher probabilities (or frequencies) are encoded by shorter strings of bits. Given a collection of symbols with corresponding probabilities, one first constructs a **Huffman tree** as follows:

Step 1. Create a vertex for each symbol and add those vertices to the queue. They will form the lowest level of the tree.

Step 2. Select the two vertices with the lowest probabilities from the queue, say u and v, and then:
- Create a new vertex, say w. (It will be above u and v in the tree.)
- Add edges from w to u and to v.
- Make the probability of w be the sum of the probabilities of u and v.
- Remove u and v from the queue.
- Add w to the queue.

Step 3. Repeat Step 2 until there is only one vertex left in the queue.

The code for each symbol can be simply read off the Huffman tree (stepping to the left means a 0, stepping to the right means a 1).

Example. We will find a Huffman code for the following symbols and probabilities:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.40</td>
</tr>
<tr>
<td>B</td>
<td>0.20</td>
</tr>
<tr>
<td>C</td>
<td>0.35</td>
</tr>
<tr>
<td>D</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Create a vertex for each symbol (for convenience, we draw them in order of decreasing probability). The circle around a vertex indicates that it belongs to the queue.
The two vertices with the lowest probabilities are the ones representing the symbols B and D, so we “join” them to a new vertex (which we denoted by u):

\[
\begin{array}{cccc}
A & C & B & D \\
0.40 & 0.35 & 0.20 & 0.05 \\
\end{array}
\]

Notice that we removed B and D from the queue (i.e., they are not circled anymore). Among the circled vertices, the ones with the lowest probabilities are C and u, so we “join” them:

\[
\begin{array}{cccc}
A & C & B & D \\
0.40 & 0.35 & 0.20 & 0.05 \\
\end{array}
\]

Finally, we “join” the remaining two vertices in the queue:

\[
\begin{array}{cccc}
A & C & B & D \\
0.40 & 0.35 & 0.20 & 0.05 \\
\end{array}
\]

Here’s what the final tree looks like:

Now we can read off the codes for the symbols:

\[
\begin{array}{cccc}
A & C & B & D \\
0 \rightarrow 0 & 1 \rightarrow 10 & 0 \rightarrow 1 & 1 \rightarrow 111 \\
\end{array}
\]