Finding the continued fraction expansion

Let us compute the continued fraction expansion of $\frac{43}{30}$. We start by separating the integer part:

$$\frac{43}{30} = 1 + \frac{13}{30}.$$

Notice that the remainder, $\frac{13}{30}$, is less than 1. Our goal is to arrive at an expression where the numerator of every fraction is 1. Since $13 \neq 1$, we invert (or “flip”) the remainder:

$$\frac{43}{30} = 1 + \frac{13}{30} = 1 + \frac{1}{\frac{30}{13}}. \quad (*)$$

Now we apply the same operations to $\frac{30}{13}$:

$$\frac{30}{13} = 2 + \frac{4}{13} = 2 + \frac{1}{\frac{13}{4}}. \quad (†)$$

And again to $\frac{13}{4}$:

$$\frac{13}{4} = 3 + \frac{1}{4} \quad (‡)$$

The last remainder, $\frac{1}{4}$, is a fraction with numerator 1, so we stop here. To obtain the desired continued fraction, we trace the steps back: First, we plug the result of (‡) into (†):

$$\frac{30}{13} = 2 + \frac{1}{\frac{13}{4}} = 2 + \frac{1}{3 + \frac{1}{4}}.$$

Then we plug that into (*):

$$\frac{43}{30} = 1 + \frac{1}{\frac{30}{13}} = 1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}}. \quad (†)$$

The final answer is

$$\frac{43}{30} = 1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}}.$$

The terms of this continued fraction are 1, 2, 3, 4:

$$\frac{1}{1} + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}}$$
Computing the convergents

To quickly find the convergents of a continued fraction, the following method can be used.

Step 1. Draw a table with three rows and several columns (you will need as many columns as many convergents you wish to find plus two).

Step 2. The first two columns are filled as shown below (the first two cells of the first row are empty):

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Step 3. The first row is filled, starting with the third cell, with the terms of the continued fraction.

Step 4. The cells of the second and the third rows are filled one by one according to the following rule: *The value in each cell is the sum of*:

- *the value two cells to the left; and*
- *the value in the cell immediately to the left times the value in the top row.*

Step 5. The convergents are precisely the fractions formed by the elements of the second and the third rows taken from the same column.

Example: Let us calculate the convergents of

\[1 + \frac{1}{2 + \frac{1}{3 + \frac{1}{4}}} \]

We start by setting up the table:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To fill in the second row, we start with the leftmost empty cell (the relevant values in the table are circled):

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Its value is

\[0 + (1 \cdot 1) = 1. \]

Then we look at the next cell:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[1 + (1 \cdot 2) = 3. \]
And so on:

\[
\begin{array}{cccc}
0 & 1 & 1 & 3 \\
1 & 0 & & \\
\end{array}
\]

1 + (3 \cdot 3) = 10.

Thus, we have filled in the second row:

\[
\begin{array}{cccc}
0 & 1 & 1 & 3 & 10 & 43 \\
1 & 0 & & & & \\
\end{array}
\]

Now we do the same with the third row:

\[
\begin{array}{cccc}
0 & 1 & 1 & 3 & 10 & 43 \\
1 & 0 & & & & \\
\end{array}
\]

1 + (0 \cdot 1) = 1.

0 + (1 \cdot 2) = 2.

Finally, the table is complete:

\[
\begin{array}{cccc}
0 & 1 & 1 & 3 & 10 & 43 \\
1 & 0 & 1 & 2 & 7 & 30 \\
\end{array}
\]

We conclude that the convergents are

\[
\frac{1}{1} = 1, \quad \frac{3}{2}, \quad \frac{10}{7}, \quad \text{and} \quad \frac{43}{30}.
\]