\[y' = \frac{t^2}{y^3(t+1)}, \quad y(0) = y_0 > 0. \quad (x) \]

\(t = -1 \) is a point of discontinuity. Thus, we should assume that

either \(t < -1 \) or \(t > -1 \). Since our initial condition is at \(t = 0 \), we

need to assume that \(t > -1 \). Also \(y = 0 \) is a discontinuity. Thus, we

must assume either \(y > 0 \) or \(y < 0 \). Since \(y_0 > 0 \), we must assume

that \(y > 0 \). We solve (x) by separating variables.

\[y \cdot dy = \frac{t^2 dt}{t+1} \Rightarrow \frac{y^2}{2} = \frac{1}{3} \log(a+t^3) + c \]

\(y/t = 0 \), \(\frac{y}{y_0} = \frac{1}{3} \cdot 0 + c \Rightarrow c = \frac{y_0}{2} \).

Thus,

\[y = \pm \sqrt{\frac{2}{3} \log(a+t^3) + y_0^2} \]

Since \(y_0 > 0 \) at \(t = 0 \), we need to take the + sign. Thus,

\[y = \sqrt{\frac{2}{3} \log(a+t^3) + y_0^2} \]

The function under the square root must be \(> 0 \), i.e.

\[\frac{2}{3} \log(a+t^3) + y_0^2 \geq 0 \]

\[\Rightarrow \log(a+t^3) \geq \frac{-3y_0^2}{2} \]

\[\Rightarrow a+t^3 > \exp\left(-\frac{3}{2}y_0^2\right) \Rightarrow t^3 > \exp\left(-\frac{3}{2}y_0^2\right) - 1 \]

We now take the cube root of both sides of (x*). Note that the right side is \(< 0 \). Thus, the cube root will be negative. Thus,

\[t > \left(e^{-\frac{3}{2}y_0^2} - 1\right)^{\frac{1}{3}} \]

Hence,

\[h = \left(1 - e^{-\frac{3}{2}y_0^2}\right)^{\frac{1}{3}} \]

Hence, \[h \] is a unique solution to (x*).

The solution is given by (x), and it is valid for

\(-h < t < h\), where \(h \) is given above.