Problems

In each of Problems 1 through 12 determine the general solution of the given differential equation that is valid in any interval not including the singular point.

1. \(x^2 y'' + 4xy' + 2y = 0 \)

2. \((x + 1)^2 y'' + 3(x + 1)y' + 0.75y = 0 \)

3. \(x^2 y'' - 3xy' + 4y = 0 \)

4. \(x^2 y'' + 3xy' + 5y = 0 \)

5. \(x^2 y'' - xy' + y = 0 \)

6. \((x - 1)^2 y'' + 8(x - 1)y' + 12y = 0 \)

7. \(x^2 y'' + 6xy' - y = 0 \)

8. \(2x^2 y'' - 4xy' + 6y = 0 \)

9. \(x^2 y'' - 5xy' + 9y = 0 \)

10. \((x - 2)^2 y'' + 5(x - 2)y' + 8y = 0 \)

11. \(x^2 y'' + 2xy' + 4y = 0 \)

12. \(x^2 y'' - 4xy' + 4y = 0 \)

In each of Problems 13 through 16 find the solution of the given initial value problem.

13. \(2x^2 y'' + xy' - 3y = 0, \quad y(1) = 1, \quad y'(1) = 4 \)

14. \(4x^2 y'' + 8xy' + 17y = 0, \quad y(1) = 2, \quad y'(1) = -3 \)

15. \(x^2 y'' - 3xy' + 4y = 0, \quad y(-1) = 2, \quad y'(-1) = 3 \)

16. \(x^2 y'' + 3xy' + 5y = 0, \quad y(1) = 1, \quad y'(1) = -1 \)

17. Find all values of \(\alpha \) for which all solutions of \(x^2 y'' + \alpha xy' + (5/2)y = 0 \) approach zero as \(x \to 0 \).

18. Find all values of \(\beta \) for which all solutions of \(x^2 y'' + \beta y = 0 \) approach zero as \(x \to 0 \).

19. Find \(y \) so that the solution of the initial value problem \(x^2 y'' - 2y = 0, y(1) = 1, y'(1) = y \)

is bounded as \(x \to \infty \).

20. Find all values of \(\alpha \) for which all solutions of \(x^2 y'' + \alpha xy' + (5/2)y = 0 \) approach zero as \(x \to \infty \).

21. Consider the Euler equation \(x^2 y'' + \alpha xy' + \beta y = 0 \). Find conditions on \(\alpha \) and \(\beta \) so that
 (a) All solutions approach zero as \(x \to 0 \).
 (b) All solutions are bounded as \(x \to 0 \).
 (c) All solutions approach zero as \(x \to \infty \).
 (d) All solutions are bounded as \(x \to \infty \).
 (e) All solutions are bounded both as \(x \to 0 \) and as \(x \to \infty \).

22. Using the method of reduction of order, show that if \(r_1 \) is a repeated root of \(r(r - 1) + \alpha r + \beta = 0 \), then \(x^{r_1} \) and \(x^{r_1} \ln x \) are solutions of \(x^2 y'' + \alpha xy' + \beta y = 0 \) for \(x > 0 \).

23. Transformation to a Constant Coefficient Equation. The Euler equation \(x^2 y'' + \alpha xy' + \beta y = 0 \) can be reduced to an equation with constant coefficients by a change of the independent variable. Let \(x = e^z \), or \(z = \ln x \), and consider only the interval \(x > 0 \).
 (a) Show that
 \[
 \frac{dy}{dx} = \frac{1}{x} \frac{dy}{dz} \quad \text{and} \quad \frac{d^2 y}{dx^2} = \frac{1}{x^2} \frac{d^2 y}{dz^2} - \frac{1}{x^2} \frac{dy}{dz}.
 \]
 (b) Show that the Euler equation becomes
 \[
 \frac{d^2 y}{dz^2} + (\alpha - 1) \frac{dy}{dz} + \beta y = 0.
 \]

Letting \(r_1 \) and \(r_2 \) denote the roots of \(r^2 + (\alpha - 1)r + \beta = 0 \), show that
 (c) If \(r_1 \) and \(r_2 \) are real and different, then
 \[
 y = c_1 e^{r_1 z} + c_2 e^{r_2 z} = c_1 x^{r_1} + c_2 x^{r_2}.
 \]
 (d) If \(r_1 \) and \(r_2 \) are real and equal, then
 \[
 y = (c_1 + c_2 z)x^{r_1} = (c_1 + c_2 \ln x)x^{r_1}.
 \]
5.6 Series Solutions near a Regular Singular Point, Part I

(e) If \(r_1 \) and \(r_2 \) are complex conjugates, \(r_1 = \lambda + i\mu \), then
\[
y = e^{x\lambda}[c_1 \cos(\mu x) + c_2 \sin(\mu x)] = x^\lambda [c_1 \cos(\mu \ln x) + c_2 \sin(\mu \ln x)].
\]
In each of Problems 24 through 29 use the method of Problem 23 to solve the given equation for \(x > 0 \).

24. \(x^2 y'' - 2y = 0 \)
25. \(x^2 y'' - 3xy' + 4y = \ln x \)
26. \(x^2 y'' + 7xy' + 5y = x \)
27. \(x^2 y'' - 2xy' + 2y = 3x^2 + 2 \ln x \)
28. \(x^2 y'' + xy' + 4y = \sin(\ln x) \)
29. \(3x^2 y'' + 12xy' + 9y = 0 \)

30. Show that if \(L[y] = x^2 y'' + axy' + \beta y \), then
\[
L[(-xy)] = (-x)^{y}F(r)
\]
for all \(x < 0 \), where \(F(r) = r(r - 1) + \alpha r + \beta \). Hence conclude that if \(r_1 \neq r_2 \) are roots of \(F(r) = 0 \), then linearly independent solutions of \(L[y] = 0 \) for \(x < 0 \) are \((-x)^{r_1}\) and \((-x)^{r_2}\).

31. Suppose that \(x^{r_1} \) and \(x^{r_2} \) are solutions of an Euler equation, where \(r_1 \neq r_2 \), and \(r_1 \) is an integer. According to Eq. (24) the general solution in any interval not containing the origin is \(y = c_1 x^{r_1} + c_2 x^{r_2} \). Show that the general solution can also be written as
\[
y = k_1 x^{r_1} + k_2 x^{r_2}.
\]

Hint: Show by a proper choice of constants that the expressions are identical for \(x > 0 \), and by a different choice of constants that they are identical for \(x < 0 \).

Complex Coefficients. If the constants \(\alpha \) and \(\beta \) in the Euler equation \(x^2y'' + axy' + \beta y = 0 \) are complex numbers, it is still possible to obtain solutions of the form \(x^r \). However, in general, the solutions are no longer real-valued. In each of Problems 32 through 34 determine the general solution of the given equation.

32. \(x^2 y'' + 2ixy' - iy = 0 \)
33. \(x^2 y'' + (1 + i)xy' + 2y = 0 \)
34. \(x^2 y'' + xy' - 2iy = 0 \)

5.6 Series Solutions near a Regular Singular Point, Part I

We now consider the question of solving the general second order linear equation
\[
P(x)y'' + Q(x)y' + R(x)y = 0
\]
in the neighborhood of a regular singular point \(x = x_0 \). For convenience we assume that \(x_0 = 0 \). If \(x_0 \neq 0 \), the equation can be transformed into one for which the regular singular point is at the origin by letting \(x = x_0 t \) equal \(t \).

The fact that \(x = 0 \) is a regular singular point of Eq. (1) means that \(xQ(x)/P(x) = xp(x) \) and \(x^2 R(x)/P(x) = x^2 q(x) \) have finite limits as \(x \to 0 \), and are analytic at \(x = 0 \). Thus they have power series expansions of the form
\[
 xp(x) = \sum_{n=0}^{\infty} p_n x^n, \quad x^2 q(x) = \sum_{n=0}^{\infty} q_n x^n,
\]
which are convergent for some interval \(|x| < \rho, \rho > 0 \), about the origin. To make the quantities \(xp(x) \) and \(x^2 q(x) \) appear in Eq. (1), it is convenient to divide Eq. (1) by \(P(x) \) and then to multiply by \(x^2 \), obtaining
\[
x^2 y'' + x[xp(x)]y' + [x^2 q(x)]y = 0,
\]