Ramanujan’s Notebooks, Part III
Errata

Bruce C. Berndt

<table>
<thead>
<tr>
<th>Page</th>
<th>line</th>
<th>Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>Read integer for integer.</td>
</tr>
<tr>
<td>10</td>
<td>9b</td>
<td>Read 18 and 19 for 19 and 20.</td>
</tr>
</tbody>
</table>
| 31 | 15 | Read \[
\frac{[(n-r+1)/2]}{2} \sum_{k=0}^{\infty} \text{ for } \sum_{k=0}^{\infty} .
\] |
| 45 | 6b | Insert a factor of 2 before \[\sum_{m,n=-\infty}^{\infty} . \] |
| 54 | 1 | After “Proof.” the remainder of the line should read: Observe that, with \(z = e^{in} \), the right side of (33.3) can be written as |
| 67 | 3 | The exponent in the latter power of \(q \) should be \[2\mu(\mu^2 - \nu^2)n^2 + 4mn(\mu^2 - \nu^2). \] |
| 69 | 12b | Read \[f(q^{\mu+\nu-2\nu n}, q^{\mu-\nu-2\nu n}) \text{ for } f(q^{\mu+\nu+2\nu n}, q^{\mu-\nu-2\nu n}). \] |
| 69 | 9b | Read \[f(q^{\mu+\nu+2\nu n}, q^{\mu-\nu-2\nu n}) \text{ for } f(q^{\mu+\nu+2\nu n}, q^{\mu-\nu-2\nu n}). \] |
| 70 | 11b | In the second denominator read \(A^2 \) for \(A \). |
| 83 | 11b | Read Evans for Evens. |
| 102 | 4 | Read \[\frac{\pi}{2} 2\, _1F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; k^2 \right) \text{ for } \frac{1}{2} 2\, _1F_1 \left(\frac{1}{2}, \frac{1}{2}; 1; k^2 \right) . \] |
| 120 | Entry 9(ii) and line 7b | Read \[\int_0^x z \, dx \text{ for } \int_0^z z \, dx. \] |

Typeset by A\TeX
125 2 Read and for nad.
134 (vii) Read
\[\tan^{-1} \left(\frac{e^{-(2k+1)y/2}}{\alpha} \right) \]
I.e., insert parentheses.
134 (viii) Read
\[\tan^{-1} \left(\frac{e^{-(2k+1)y/4}}{\alpha} \right) \]
I.e., insert parentheses.
146 line above (3.5) Read Write for Wirte.
228 3b Read \(1 + \frac{q^6}{n+5} \) for \(1 - \frac{q^6}{n+5} \).
229 13b, 11b Read \(f(-q, q^2) \) for \(f(-q, -q^2) \).
232 2 Read \(\varphi(-q^6) \) for \(\varphi^3(-q^6) \).
232 5 Read \((1 - \beta)^{1/8} \) for \((1 - \beta) \).
239 3 Read formula (24.14) in Chapter 18, for formula (5.1).
253 11 Read \(8q^{16} \) for \(9q^{16} \).
253 12 Read \(10q^{18} \) for \(11q^{18} \).
253 2b Read \(1 + \frac{q^{10n}}{n} \) for \(1 + \frac{q^{10}}{n} \).
267 13 Read \(J \) for \(J \).
273 7 Read \(\vartheta_2(0, 25\tau/2) \) for \(\vartheta_2(0, 25/\tau) \).
282 4 Read
\[P = \{16\alpha\beta(1 - \alpha)(1 - \beta)\}^{1/12} \]
for
\[P = \{16\alpha\beta(1 - \alpha)(1 - \beta)\}^{1/2} \]
296 1 Read
\[\left(1 - 2 \left(\frac{m'}{m} \right)^{1/2} \right) \left(\frac{3^2(1 - \beta)^2}{\alpha(1 - \alpha)(1 - \gamma)} \right)^{1/4} \]
for
\[\left(1 - 2 \left(\frac{m'}{m} \right)^{1/2} \right) \left(\frac{3^2(1 - \beta)^2}{\alpha(1 - \alpha)(1 - \gamma)} \right)^{1/4} \]
305 (ii) Replace “With \(u, v, \) and \(w \) as above,” by: “There are positive functions \(u_1, v_1, \) and \(w_1 \) such that
In the remainder of Part (ii), i.e., in lines 6b, 4b, and 2b, replace \(u \) by \(u_1, v \) by \(v_1, \) and \(w \) by \(w_1 \).
313 9 Replace “Thus, by (18.42) and part (i)” by: “Transforming \(u, v, \) and \(w \) into the functions \(u_1, v_1, \) and \(w_1 \) of \(Q \), respectively, and using (18.42) and part (i), we find that”
In lines 10, 12, and 13, replace \(u \) by \(u_1, v \) by \(v_1, \) and \(w \) by \(w_1 \).
NOTE TO PRINTER: Because of the additional text in line 9, possibly some space can be saved by combining lines 4b and 3b into one line.
315 15b Read 1885 for 1835.
337 15 Read \((e^{-2\pi i\gamma})_\infty \) for \((e^{-2\pi i\gamma})_\infty \).
345 9 Read
\[
\frac{q^3 + q^6}{1} + \cdots \text{ for } \frac{q^3 + q^6}{1} + \cdots .
\]

405 4 Read
\[
\text{Ord}_F \left(F; M^\frac{r}{s} \right) \text{ for } \text{Ord}_F \left(F; M^\frac{r}{s} \right).
\]

479 10 Insert equation number (7.9) at the right margin.

479 3b Insert equation number (7.10) at the right margin.

481 11 After “Entry 9” add the words: If β has degree 23, then

493 7b, 6b Read Sér. for Ser.

494 1b Replace the title of the paper by: Function theory for Rogers–Ramanujan–like partition identities.

495 28 Read 1885 for 1835.

