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Abstract Three proofs are given for a reciprocity theorem for a certain q-series found 7

in Ramanujan’s lost notebook. The first proof uses Ramanujan’s 1ψ1 summation the- 8

orem, the second employs an identity of N. J. Fine, and the third is combinatorial. 9

Next, we show that the reciprocity theorem leads to a two variable generalization of 10

the quintuple product identity. The paper concludes with an application to sums of 11

three squares. 12
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30 B. C. Berndt et al.

1 Introduction16

In his lost notebook [15, p. 40]. Ramanujan offers a beautiful reciprocity theorem for17

ρ(a, b) :=
(

1 + 1

b

) ∞∑
n=0

(−1)nqn(n+1)/2anb−n

(−aq)n
, (1.1)

where a and b are any complex numbers, except that a �= −q−n for any positive integer18

n.19

Theorem 1.1. If a, b �= −q−n, then20

ρ(a, b) − ρ(b, a) =
(

1

b
− 1

a

)
(aq/b)∞(bq/a)∞(q)∞

(−aq)∞(−bq)∞
. (1.2)

In (1.1) and (1.2) and in the sequel, we use the customary notation2122

(a)0 := (a; q)0 := 1, (a)n := (a; q)n :=
n−1∏
k=0

(1 − aqk), n ≥ 1,

(a)∞ := (a; q)∞ :=
∞∏

k=0

(1 − aqk),

(a)n := (a; q)n := (a; q)∞
(aqn; q)∞

, −∞ < n < ∞.

The first proof of Theorem 1.1 was given by Andrews [2], who used considerably23

heavy machinery. He then employed Theorem 1.1 in a later paper [3] to prove two24

beautiful entries from Ramanujan’s lost notebook related to Euler’s famous theorem25

asserting that partitions of a positive integer n into odd parts are equinumerous with26

partitions of n into distinct parts. The purpose of this short note is to provide three27

new proofs of Theorem 1.1 and to show that it leads to a generalization, involving one28

additional variable, of the quintuple product identity. In the final section of our paper29

we give an application of Theorem 1.1 to sums of three squares.30

In closing our introduction, we remark that there is a slightly simpler representation31

of ρ(a, b). Write32

ρ(a, b) =
∞∑

n=0

(−1)nqn(n+1)/2anb−n

(−aq)n
+

∞∑
n=0

(−1)nqn(n+1)/2anb−n−1

(−aq)n
. (1.3)

Now replace n by n + 1 in the first sum on the right side of (1.3) and then recombine33

the sums. After elementary simplification, we find that34

ρ(a, b) = 1 +
∞∑

n=0

(−1)nqn(n+1)/2anb−n−1

(−aq)n+1

. (1.4)
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A reciprocity theorem for certain q-series found in Ramanujan’s lost notebook 31

2 Proofs 35

In this section, we give three proofs of Theorem 1.1. The first proof rests upon 36

Ramanujan’s 1ψ1 summation theorem and the second iterate of Heine’s transformation. 37

The second depends upon a transformation formula of N. J. Fine and the Jacobi triple 38

product identity. Lastly, our third proof is partition theoretic and purely combinatorial. 39

40

First Proof of Theorem 1.1: Recall Ramanujan’s 1ψ1 summation formula [5, p. 34, 41

Eq. (17.6)]. If |b/a| < |z| < 1, then 42

1ψ1(a; b; z) :=
∞∑

n=−∞

(a)n

(b)n
zn = (b/a)∞(az)∞(q/(az))∞(q)∞

(q/a)∞(b/(az))∞(b)∞(z)∞
. (2.1)

Letting b = 0, replacing a by −1/a, setting z = −b, and lastly multiplying both sides 43

by (1 + 1/b), we find that 44

(
1 + 1

b

) ∞∑
n=−∞

(−1/a)n(−b)n

=
(

1 + 1

b

) ∞∑
n=1

(−1/a)n(−b)n +
(

1 + 1

b

) ∞∑
n=0

(−1/a)−n(−b)−n

=
(

1 + 1

b

)
(b/a)∞(aq/b)∞(q)∞

(−b)∞(−aq)∞

=
(

1

b
− 1

a

)
(bq/a)∞(aq/b)∞(q)∞

(−bq)∞(−aq)∞
. (2.2)

We now examine the two sums on the right side of the first equality in (2.2). For the first 45

sum, we use Rogers’s transformation, or the second iterate of Heine’s transformation 46

[14], [5, p. 15, fourth line from the bottom of the page]. For |z|, |c/b| < 1, 47

∞∑
n=0

(a)n(b)n

(c)n(q)n
zn = (c/b)∞(bz)∞

(c)∞(z)∞

∞∑
n=0

(abz/c)n(b)n

(bz)n(q)n

(
c

b

)n

. (2.3)

Now let b = q and let c → 0 to deduce from (2.3) that 48

∞∑
n=0

(a)nzn = 1

1 − z

∞∑
n=0

(−1)nqn(n−1)/2anzn

(zq)n
. (2.4)
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32 B. C. Berndt et al.

Next, in (2.4), let z = −b and replace a by −q/a to deduce that49 (
1 + 1

b

) ∞∑
n=1

(−1/a)n(−b)n =
(

1 + 1

b

) (
1 + 1

a

)
(−b)

∞∑
n=0

(−q/a)n(−b)n

= −
(

1 + 1

a

) ∞∑
n=0

(−1)nqn(n+1)/2a−nbn

(−bq)n

= −ρ(b, a). (2.5)

The second sum on the right side of (2.2) is easier to examine. Observe that50

(−1/a)−n = 1

(−q−n/a)n
= anqn(n+1)/2

(−aq)n
,

after elementary algebra, so that51 (
1 + 1

b

) ∞∑
n=0

(−1/a)−n(−b)−n =
(

1 + 1

b

) ∞∑
n=0

(−1)nqn(n+1)/2anb−n

(−aq)n

= ρ(a, b). (2.6)

Using (2.5) and (2.6) in (2.2), we complete our first proof. �52

53

Second Proof of Theorem 1.1: We begin with a transformation from Fine’s text [10,54

p. 7, Eqs. (8.2) and the equality F + G = H S above]. Replacing u by b and b by −a55

in this formula and correcting a misprint, we find that56

(1 + a)

∞∑
n=0

(−q/b)n(−a)n − b

1 + b

∞∑
n=0

qn

(−aq)n(−bq)n

= 1

(−aq)∞(−b)∞

∞∑
n=0

(
− a

b

)n

qn(n+1)/2. (2.7)

(In the formula for H in (8.2) of [10, p. 7], replace (u)∞ by (−u)∞. There are three57

similar misprints in (8.1).) Return to (2.4) and replace a by −q/b and set z = −a to58

deduce that59

∞∑
n=0

(−q/b)n(−a)n = 1

1 + a

∞∑
n=0

(−1)nqn(n+1)/2anb−n

(−aq)n
= b

(1 + a)(1 + b)
ρ(a, b).

(2.8)

Using (2.8) in (2.7) and multiplying both sides by (1 + b)/b, we find that60

ρ(a, b) −
∞∑

n=0

qn

(−aq)n(−bq)n
= 1

b(−aq)∞(−bq)∞

∞∑
n=0

(
− a

b

)n

qn(n+1)/2.

(2.9)
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A reciprocity theorem for certain q-series found in Ramanujan’s lost notebook 33

Now rewrite (2.9) with a and b interchanged to find that 61

ρ(b, a) −
∞∑

n=0

qn

(−aq)n(−bq)n
= 1

a(−aq)∞(−bq)∞

∞∑
n=0

(
−b

a

)n

qn(n+1)/2.

(2.10)

Subtracting (2.10) from (2.9), we deduce that 62

ρ(a, b) − ρ(b, a)

= 1

(−aq)∞(−bq)∞

{
1

b

∞∑
n=0

(
− a

b

)n

qn(n+1)/2 − 1

a

∞∑
n=0

(
− b

a

)n

qn(n+1)/2

}

= 1

(−aq)∞(−bq)∞

{
1

b

∞∑
n=0

(
− a

b

)n

qn(n+1)/2 − 1

a

−1∑
n=−∞

(
− a

b

)n+1

qn(n+1)/2

}
.

(2.11)

Recall that Ramanujan’s definition of his theta function f (α, β) and the Jacobi triple 63

product identity [5, pp. 34–35] are given by 64

f (α, β) :=
∞∑

n=−∞
αn(n+1)/2βn(n−1)/2 = (−α; αβ)∞(−β; αβ)∞(αβ; αβ)∞. (2.12)

Hence, by (2.12), (2.11) can be rewritten as 65

ρ(a, b) − ρ(b, a) = 1

(−aq)∞(−bq)∞

1

b
f (−aq/b, −b/a)

= 1

(−aq)∞(−bq)∞

1

b
(aq/b)∞(b/a)∞(q)∞

=
(

1

b
− 1

a

)
(aq/b)∞(bq/a)∞(q)∞

(−aq)∞(−bq)∞
,

which completes the second proof. � 66

67

Third Proof of Entry 1.1: Replace b by −b in (1.2). After some simplification, we 68

find that 69

(−aq/b)∞(−b/a)∞
(b)∞

= (−aq)∞
(q)∞

∞∑
n=0

qn(n+1)/2(a/b)n

(−aq)n
+ (−a)∞

(q)∞

∞∑
n=0

qn(n+1)/2(b/a)n+1

(b)n+1

(2.13)

= 1

(q)∞

∞∑
n=0

qn(n+1)/2(−aqn+1)∞(a/b)n + (−aq)∞
(q)∞

∞∑
n=1

(−1/a)nbn, (2.14)
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34 B. C. Berndt et al.

where the last equality is obtained as follows. We put the first factor (1 + a) of (−a)∞70

in the second expression of (2.13) into the summation, and replace n by (n − 1). Then71

we obtain72

∞∑
n=1

(1 + a)
qn(n−1)/2(b/a)n

(b)n
=

∞∑
n=1

(1 + 1/a)
qn(n−1)/2(1/a)n−1

(b)n
bn,

each term of which generates partitions into n nonnegative distinct parts. Thus we can73

rewrite it as the second summation on the right side of (2.14).74

A generalized Frobenius partition, or F-partition, of n is a two-rowed array75 (
a1 a2 . . . as

b1 b2 . . . br

)
,

where ai and bi are weakly decreasing sequences of nonnegative integers and s +76 ∑s
i=1 ai + ∑r

i=1 bi = n. The left hand side of (2.13) can be interpreted as a generating77

function for F-partitions, where the top rows are partitions into distinct nonnegative78

parts and the bottom rows are overpartitions, which are partitions where the first79

occurrence of a nonnegative number may be overlined. Let s = r + k. We consider80

two cases: when k ≥ 0 and when k < 0.81

Case I. k ≥ 0. This case explains the first expression on the right side of (2.14).82

1. Rearrange the parts in the bottom row such that overlined parts follow unrestricted83

parts, overlined parts are in decreasing order, and unrestricted parts are in weakly84

increasing order. We denote the bottom row so obtained by (β1 β2 . . . βr ).85

2. Divide the top row (a1 a2 . . . ar+k) into two ordinary partitions λ and μ, where86

λi = ai − (r + k − i),

μi = (r + k − i) + 1.

3. Produce a partition ν(1) into distinct parts and a partition ν(2) as follows: for 1 ≤87

i ≤ r ,88

– put βi + μr−i+1 as part of ν(1) if βr−i+1 is unrestricted,89

– put βi + μr−i+1 as a part of ν(2) if βr−i+1 is overlined.90

Note that the parts of ν(1) are greater than k, since μr−i+1 equals (k + i). Thus91

ν(1) generated by (−aqk+1)∞ in the first summation on the right side of (2.14).92

Moreover, the parts ν(2) are greater than or equal to (r + k), since βi is greater than93

or equal to (r − i) if βi is overlined, and μr−i+1 equals (k + i). Rearrange the parts94

of each partition in weakly decreasing order.95

4. The remaining parts μr+1, . . . , μr+k of μ form the partition ρ into parts from96

1, 2, . . . , k, which is generated by (a/b)kqk(k+1)/2 in the first summation of the97

right side of (2.14).98
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A reciprocity theorem for certain q-series found in Ramanujan’s lost notebook 35

5. Add the parts of the conjugate of λ to ν(2) as parts. Note that the conjugate of λ has 99

parts less than or equal to (r + k), since λ has at most (r + k) positive parts. We see 100

that ν(2) is generated by 1/(q)∞ in the first expression of the right side of (2.14). 101

Case II. k < 0. This case explains the second expression on the right side of (2.14). 102

1. Rearrange the parts in the bottom row such that the resulting array (β1 β2 . . . βr ) 103

satisfies the condition that β ′
i are weakly decreasing, where 104

β ′
i =

{
βi − (r − i), if βi is overlined,

βi , if βi is unrestricted.

2. Divide the bottom row (β1 β2 · · · βr ) into two ordinary partitions λ and μ, where 105

λi =
{

βi − (r − i), if βi is overlined,

βi , if βi is unrestricted.

μi =
{

(r − i), if βi is overlined,

0, if βi is unrestricted.

3. Produce a partition ν(1) into distinct parts and a partition ν(2) as follows: for 1 ≤ 106

i ≤ (r + k), 107

– put ai + 1 + μr+k−i+1 as a part of ν(1), if βr+k−i+1 is unrestricted, 108

– put ai + 1 + μr+k−i+1 as a part of ν(2), if βr+k−i+1 is overlined. 109

Note that the parts of ν(1) are distinct since the parts ai are distinct. Thus ν(1) is 110

generated by (−aq)∞ in the second summation of (2.14). Moreover, the parts of 111

ν(2) are greater than or equal to r , since ai is greater than or equal to (r + k − i) 112

and μr+k−i+1 equals (−k + i − 1) if βi is overlined. 113

4. The remaining parts μr+k+1,... ,μr of μ form an array ρ, which is generated by 114

(−1/a)kbk in the second summation of the right side of (2.14). 115

5. Add the parts of the conjugate of λ to ν(2) as parts. Note that conjugate of λ has 116

parts less than or equal to r , since λ has at most r positive parts. We see that ν(2) is 117

generated by 1/(q)∞ in the second summation of the right side of (2.14). 118

The arguments in our third proof can be extended to give a completely combinatorial 119

proof of Ramanujan’s 1ψ1 summation theorem [17]. 120

3 Theorem 1.1 as a two variable generalization of the quintuple product 121

identity 122

We show in this section that by utilizing a specialized version of the Rogers-Fine 123

identity (3.1), we may express (1.2) as a two variable generalization of the quintuple 124

product identity. We remark that the method we employ is similar to that used in [7]. 125
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36 B. C. Berndt et al.

Theorem 3.1 (A Two Variable Generalization of the Quintuple Product Identity).126

For a, b �= q−n, 1 ≤ n < ∞,127 (
1

a
− 1

b

)
(aq/b)∞(bq/a)∞(q)∞

(aq)∞(bq)∞

=
∞∑

n=0

(−1)n(1/a)na−n−1b2nq3n(n+1)/2(1 − bq2n+1/a)

(bq)n+1

−
∞∑

n=0

(−1)n(1/b)na2nb−n−1q3n(n+1)/2(1 − aq2n+1/b)

(aq)n+1

.

Proof: First recall the Rogers-Fine identity [10, p. 15, Eq. (14.1)]128

∞∑
n=0

(α)nτ
n

(β)n
=

∞∑
n=0

(α)n(ατq/β)nβ
nτ nqn2−n(1 − ατq2n)

(β)n(τ )n+1

. (3.1)

Setting β = 0 in (3.1), we find that129

∞∑
n=0

(α)nτ
n =

∞∑
n=0

(−1)n(α)nα
nτ 2nqn(3n−1)/2(1 − ατq2n)

(τ )n+1

. (3.2)

Applying (2.4) and (3.2) to (1.4), we find that130

ρ(a, b) = 1 + 1

b

∞∑
n=0

(−1)nqn(n+1)/2anb−n

(−aq)n+1

= 1 + 1

b

∞∑
n=0

(−1/b)n(−aq)n

= 1 +
∞∑

n=0

(−1/b)na2nb−n−1q3n(n+1)/2(1 − aq2n+1/b)

(−aq)n+1

. (3.3)

Rewriting Theorem 1.1 with the representation of ρ(a, b) given in (3.3) and replac-131

ing both a and b with −a and −b, respectively, we complete the proof of Theorem 3.1.132

133 �

Corollary 3.2 (Quintuple Product Identity). ([5, p. 80, Eq. (38.2)]) For any complex134

number a,135

(a2)∞(q/a2)∞(q)∞
(a)∞(q/a)∞

=
∞∑

n=−∞
(−1)nqn(3n+1)/2(a3n+1 + a−3n). (3.4)
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A reciprocity theorem for certain q-series found in Ramanujan’s lost notebook 37

Proof: Set b = 1/(aq) in Theorem 3.1 and multiply both sides by a2. After simpli- 136

fying, we find that 137

(a2)∞(q/a2)∞(q)∞
(a)∞(q/a)∞

=
∞∑

n=0

(−1)n(1/a)na−3n+1qn(3n−1)/2(1 − q2n/a2)

(1/a)n+1

−
∞∑

n=0

(−1)n(aq)na3n+3q (n+1)(3n+2)/2(1 − a2q2n+2)

(aq)n+1

=
∞∑

n=0

(−1)na−3n+1qn(3n−1)/2

(
1 + qn

a

)

+
∞∑

n=1

(−1)na3nqn(3n−1)/2(1 + aqn)

=
∞∑

n=−∞
(−1)nqn(3n+1)/2(a3n+1 + a−3n),

and this completes the proof of (3.4). 138�

4 A new representation for the generating function for sums of three squares 139

Letting b → 1 in Theorem 1.1, we find that 140

2

∞∑
k=0

(−1)kqk(k+1)/2ak

(−aq)k
−

(
1 + 1

a

) ∞∑
k=0

(−1)kqk(k+1)/2a−k

(−q)k

=
(

1 − 1

a

)
(aq)∞(q/a)∞(q)∞

(−aq)∞(−q)∞
.

Dividing both sides by a − 1 and letting a → 1, we find that 141

(q)3
∞

(−q)2∞
= d

da

(
2

∞∑
k=0

(−1)kqk(k+1)/2ak

(−aq)k

)
a=1

− d

da

((
1 + 1

a

) ∞∑
k=0

(−1)kqk(k+1)/2a−k

(−q)k

)
a=1

=: S1 + S2. (4.1)

To evaluate these last two expressions, we need the q-analogue of Euler’s trans- 142

formation, or the third iterate of Heine’s transformation [5, p. 15, third line from the 143

bottom of the page], given by 144

∞∑
n=0

(a)n(b)n

(c)n(q)n
zn = (abz/c)∞

(z)∞

∞∑
n=0

(c/a)n(c/b)n

(c)n(q)n

(
abz

c

)n

. (4.2)
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38 B. C. Berndt et al.

Letting a = 0, b = −1, and c = −q , and then replacing z by −zq in (4.2), we find145

that146

2

∞∑
n=0

(−q)nzn

(1 + qn)(q)n
= 1

(−zq)∞

∞∑
n=0

(−1)nqn(n+1)/2zn

(−q)n
. (4.3)

Similarly, letting a = 0, b = −c, and z = −q , and replacing c by −cq, in (4.2), we147

find that148

∞∑
n=0

(1 + c)(−q)n

(1 + cqn)(q)n
= 1

(−q)∞

∞∑
n=0

(−1)nqn(n+1)/2cn

(−cq)n
. (4.4)

Applying (4.4) to S1 in (4.1), we find that149

S1 = 2(−q)∞
d

da

(
(1 + a)

∞∑
k=0

(−q)k

(1 + aqk)(q)k

)
a=1

= 2(−q)∞
∞∑

k=0

(−q)k

(1 + qk)(q)k

(
1 − 2

qk

1 + qk

)
.

Applying (4.3) to S2 in (4.1), we find that150

S2 = 2
d

da

((−q

a

)
∞

(
1 + 1

a

) ∞∑
k=0

(−q)ka−k

(1 + qk)(q)k

)
a=1

= 4(−q)∞
∞∑

k=0

(−q)k

(1 + qk)(q)k

(
−k −

∞∑
n=0

qn

1 + qn

)
.

Using the last two calculations in (4.1), dividing both sides by (−q)∞, and using151

the Jacobi triple product identity (2.12), we find that152 ( ∞∑
k=−∞

(−q)k2

)3

= (q)3
∞

(−q)3∞

=
∞∑

k=0

(−q)k

(1 + qk)(q)k

(
2 − 4

qk

1 + qk
+ 4k + 4

∞∑
n=0

qn

1 + qn

)
.

(4.5)

We close this section by offering a few further formulas for the generating function153

for sums of three squares.154

Andrews [4] proved that155

(q)3
∞

(−q)3∞
= 1 + 4

∞∑
m=1

(−1)mqm

1 + qm
− 2

∞∑
m≥1,| j |<m

qm2− j2

(1 − qm)(−1) j

1 + qm
.
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Using their 2ψ2 summation formula, Adiga and Bhargava [6, Eq. (3.7)] obtained 156

the representation 157

(q)3
∞

(−q)3∞
= 1 + 2

∞∑
m=1

(−1)mqm(m+1)/2

(−q)m(1 + qm)
+ 4

∞∑
m=1

(−q)m−1(−q)m

1 + qm
.

In [8, Eq. (8)], using a generalized 1ψ1 summation formula of Andrews [4, Thm. 6], 158

Bhargava, Adiga, and D. D. Somashekara proved that 159

(−q; −q)3
∞

(q; −q)3∞
= 1 + 2

∞∑
m=1

(−q; q2)mqm

(1 + q2m)(−q2; q2)m
+ 4

∞∑
m=1

(q2; q2)m−1qm

(1 + q2m)(q; q2)m
.

Since this paper was prepared in early 2003, several further proofs as well as gen- 160

eralizations of Theorem 1.1 have emerged. Somashekara and S. N. Fathima [16], 161

Bhargava, Somashekara, and Fathima [9], T. Kim, Somashekara, and Fathima [12], 162

and Adiga and N. Anitha [1] have each given proofs of Theorem 1.1. Distinct gener- 163

alizations of Theorem 1.1 have been devised by S.–Y. Kang [11], Z.–G. Liu [13], and 164

Z. Zhang [18]. 165
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