Math 595 “The Grassmannian”: Total positivity

Alexander Yong
University of Illinois at Urbana-Champaign

April 19, 2011
Outline

I Preliminaries about total positivity
II The totally nonnegative part of the Grassmannian
III Some (more recent) results; problems
A square matrix A is **totally positive** if all of its minors are positive real numbers. (Similarly we define a **totally nonnegative** matrix.)

Example: $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & 6 \end{bmatrix}$ has nine 1×1 minors

\[\Delta_{\{1\},\{1\}} = |1|, \Delta_{\{1\},\{2\}} = |1|, \ldots, \]

nine 2×2 minors

\[\Delta_{\{1,2\},\{1,2\}} = \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} = 1, \Delta_{\{2,3\},\{1,3\}} = \begin{vmatrix} 1 & 3 \\ 1 & 6 \end{vmatrix} = 3, \ldots \]

and the 3×3 minor $\Delta_{\{1,2,3\},\{1,2,3\}} = 1$. \[\square\]
A systematic study of total positivity was initiated in the 1930’s by Gantmacher-Krein (they showed existence of n distinct positive eigenvalues).

Relations/applications to:

- oscillations in mechanical systems
- stochastic processes and approximation theory
- Polya frequency sequences
- representation theory of S_∞
- planar resistor networks
- quantum groups
- Somos sequences
Two basic questions:

Question A: How do you parametrize totally positive matrices?

Question B: How do you efficiently test for total positivity?

- The answers to both questions involve the theme of positivity in combinatorics.
Question A: Parametrizing totally positive matrices

The matrix

\[
\begin{bmatrix}
 d & dh & dhi \\
 bd & bdh + e & bdhi + eg + ei \\
 abd & abdh + ae + ce & abdhi + (a + c)e(g + i) + f \\
\end{bmatrix}
\]

for \(a, b, c, d, e \in \mathbb{R}_+\) is totally positive.

Fact: Every \(3 \times 3\) totally positive is of this form

Our goals for Question A:

- Give a combinatorial construction of this matrix (and the \(n \times n\) generalization).
- Give a combinatorial explanation of the positivity of minors.
Consider a **planar network** Γ with **edge weighting** ω:

- The **sources** are the extreme left nodes and the **sinks** are the extreme right nodes.
- The **weight** of a directed path in Γ is the product of the weights of its edges.
The **weight matrix** $A(\Gamma, \omega)$ is the $n \times n$ matrix with

\[A_{ij} = \text{sum of weights of paths from source } i \text{ to sink } j. \]

Theorem: $A(\Gamma, \omega)$ is totally positive.

In class exercise: Give a combinatorial interpretation of the determinant.
The weight matrix $A(\Gamma, \omega)$ is the $n \times n$ matrix with

$$A_{ij} = \text{sum of weights of paths from source } i \text{ to sink } j.$$

Theorem: $A(\Gamma, \omega)$ is totally positive.

In class exercise: Give a combinatorial interpretation of the determinant.

Solution: The determinant is

$$\det(A) = \sum_{w \in S_n} \sum_{\pi} \text{sgn}(w) \omega(\pi),$$

where

- the inner sum is over all families of paths $\pi = (\pi_1, \ldots, \pi_n)$ from the sources to the sinks
- $\omega(\pi) = \omega(\pi_1) \cdots \omega(\pi_n)$
path 1 → 2 has weight: dh
path 2 → 1 has weight: bd
path 3 → 3 has weight: ceg

$w = 213$ and $\text{sgn}(w) = -1$

Hence family contributes $-(dh)(bd)(ceg)$ to $\det(A)$.
The signed expression for $\det(A)$ doesn’t manifest the claimed positivity!

In class exercise: How do we prove positivity of the determinant nonetheless?
Planar network IV

The signed expression for $\det(A)$ doesn’t manifest the claimed positivity!

In class exercise: How do we prove positivity of the determinant nonetheless?

Solution: We can cancel all negative contributions by a *sign reversing involution*:

- The paths intersect, so we can “path switch” at an intersection to change the sgn
- This gives a positive contribution to $\det(A)$ which cancels with our negative contribution.

Thus our theorem is immediate from:

Lindström’s Lemma: $\det(A) = \sum_\pi \omega(\pi)$ where $\pi = (\pi_1, \ldots, \pi_n)$ are nonintersecting families of paths (necessarily sending source i to sink i).
In class exercise: Convince yourself that Lindstöm’s Lemma is true (say in our example network).
In class exercise: Convince yourself that Lindström’s Lemma is true (say in our example network).

Solution comments: In our example, there’s only one nonintersecting path family:

![Diagram of a planar network](image)

and so $\det(A) = fed(> 0)$.

For smaller minors of A, the same argument works.
Theorem: (Gasca-Peña) A square matrix is totally positive if and only if its **initial minors** $\Delta_{I,J}$ (where $1 \in I \cup J$ and I and J each form an interval) are positive. Thus one has an n^2 check (and this is tight).

Goal: Set up a combinatorial framework where this test is a special case.
Any two wires of the same color cross exactly once

There are n^2 chambers

Each chamber indexes a chamber minor, determined by which wires of each color are below it
Theorem: (Fomin-Zelevinsky) A square matrix A is totally positive if and only if its chamber minors are positive.

The proof is immediate from

Theorem: (Fomin-Zelevinsky) Any minor of A is a subtraction free rational expression in the chamber minors of a given double wiring diagram.
Theorem: (Fomin-Zelevinsky) A square matrix A is totally positive if and only if its chamber minors are positive.

The proof is immediate from

Theorem: (Fomin-Zelevinsky) Any minor of A is a subtraction free rational expression in the chamber minors of a given double wiring diagram.

In class exercise: Demonstrate the theorem above for $\Delta_{2,1}$.
Theorem: (Fomin-Zelevinsky) A square matrix A is totally positive if and only if its chamber minors are positive.

The proof is immediate from

Theorem: (Fomin-Zelevinsky) Any minor of A is a subtraction free rational expression in the chamber minors of a given double wiring diagram.

In class exercise: Demonstrate the theorem above for $\Delta_{2,1}$.

Solution: $\Delta_{2,1} = \frac{\Delta_{3,2}\Delta_{23,12} + \Delta_{3,1}\Delta_{13,23}}{\Delta_{13,12}}$.

"\[\]"
Theorem: (Fomin-Zelevinsky) A square matrix A is totally positive if and only if its chamber minors are positive.

The proof is immediate from

Theorem: (Fomin-Zelevinsky) Any minor of A is a subtraction free rational expression in the chamber minors of a given double wiring diagram.

In class exercise: Demonstrate the theorem above for $\Delta_{2,1}$.

Solution: $\Delta_{2,1} = \frac{\Delta_{3,2}\Delta_{23,12} + \Delta_{3,1}\Delta_{13,23}}{\Delta_{13,12}}$.

Main conjecture: Every minor is a Laurent polynomial with positive coefficients, in chamber minors of an arbitrary double wiring diagram.

Open problem: What is a combinatorial rule for this expansion?
G. Lusztig extended the notion of total positivity (or nonnegativity) to any complex semisimple Lie group G and to any G/P, with further work by K. Rietsch. We will discuss the particular situation of the (real) Grassmannian $Gr_k(\mathbb{R}^n)$, following work of A. Postnikov.

Almost all of what we said about complex Grassmannians (Plücker embedding, Schubert, matroid decompositions) carries over to the real Grassmannian.
The totally nonnegative part of the Grassmannian I

G. Lusztig extended the notion of total positivity (or nonnegativity) to any complex semisimple Lie group G and to any G/P, with further work by K. Rietsch. We will discuss the particular situation of the (real) Grassmannian $\text{Gr}_k(\mathbb{R}^n)$, following work of A. Postnikov.

Almost all of what we said about complex Grassmannians (Plücker embedding, Schubert, matroid decompositions) carries over to the real Grassmannian.

Definition: The **totally nonnegative Grassmannian** $\text{Gr}^{TNN}_k(\mathbb{R}^n) \subset \text{Gr}_k(\mathbb{R}^n)$ is

$$\text{Gr}^{TNN}_k(\mathbb{R}^n) = GL^+_k \setminus \text{Mat}^{TNN}_{k,n}$$

where $\text{Mat}^{TNN}_{k,n}$ is the set of $k \times n$ matrices of rank k whose *maximal* minors have positive determinant. (Similarly define the totally positive part of the Grassmannian.)
In class exercise: Describe $\Gr^T_{kN}(\mathbb{R}^n)$ in terms of the Plücker coordinates.
In class exercise: Describe $\text{Gr}^\text{TNN}_k(\mathbb{R}^n)$ in terms of the Plücker coordinates.

Solution: Under the Plücker embedding in $\mathbb{P}^{n\choose k} - 1$ it’s the points whose Plücker coordinates are all nonnegative.
In class exercise: Describe $\text{Gr}^T_{k}(\mathbb{R}^n)$ in terms of the Plücker coordinates.

Solution: Under the Plücker embedding in $\mathbb{P}^{\binom{n}{k}-1}$ it’s the points whose Plücker coordinates are all nonnegative.

In class exercise: Why is the space of totally nonnegative matrices a (big cell) piece of a totally nonnegative Grassmannian?
The totally nonnegative part of the Grassmannian II

In class exercise: Describe $Gr^T_{k}(\mathbb{R}^n)$ in terms of the Plücker coordinates.

Solution: Under the Plücker embedding in $\mathbb{P}\binom{n}{k}^{−1}$ it’s the points whose Plücker coordinates are all nonnegative.

In class exercise: Why is the space of totally nonnegative matrices a (big cell) piece of a totally nonnegative Grassmannian?

Brief solution: We use the echelon form description of the big cell in $Gr_{n}(\mathbb{R}^{2n})$, namely $[A|I]$ where I is the $n \times n$ identity matrix and A is arbitrary. However, if we impose that the corresponding point is in the TNN part, each $n \times n$ minor is nonnegative. Now take any TNN matrix B and alternate the signs of the rows to give A.

Alexander Yong University of Illinois at Urbana-Champaign
Math 595 “The Grassmannian”: Total positivity
We have two decompositions of the Grassmannian (Schubert, matroid). Either one imposes a decomposition of $\text{Gr}_k^{TNN}(\mathbb{R}^n)$. Postnikov’s work focuses on the matroid one.

Definition: The **TNN Grassmann cells** are $X_M^{TNN} = X_M \cap \text{Gr}_k^{TNN}(\mathbb{R}^n)$.

Definition: The above definition allows one to define a **TNN matroid** M to be one where $X_M^{TNN} \neq \emptyset$.
We have two decompositions of the Grassmannian (Schubert, matroid). Either one imposes a decomposition of $\text{Gr}_k^{TNN}(\mathbb{R}^n)$. Postnikov’s work focuses on the matroid one.

Definition: The **TNN Grassmann cells** are $X_{\mathcal{M}}^{TNN} = X_{\mathcal{M}} \cap \text{Gr}_k^{TNN}(\mathbb{R}^n)$.

Definition: The above definition allows one to define a **TNN matroid** \mathcal{M} to be one where $X_{\mathcal{M}}^{TNN} \neq \emptyset$.

In class exercise: Determine all TNN matroids for $k = 2$ and $n = 4$.
We have two decompositions of the Grassmannian (Schubert, matroid). Either one imposes a decomposition of $\text{Gr}^{\text{TNN}}_k(\mathbb{R}^n)$. Postnikov’s work focuses on the matroid one.

Definition: The **TNN Grassmann cells** are $X_M^{\text{TNN}} = X_M \cap \text{Gr}^{\text{TNN}}_k(\mathbb{R}^n)$.

Definition: The above definition allows one to define a **TNN matroid** M to be one where $X_M^{\text{TNN}} \neq \emptyset$.

In class exercise: Determine all TNN matroids for $k = 2$ and $n = 4$.

Solution: The not TNN matroids are $M = \{12, 23, 34, 13\}$, $M \cup 13$ and $M \cup 24$. This is closed under cyclic shifts of $[4]$. Why?
Interesting behavior: The X^TNN_M are balls (as opposed to X_M themselves).

Theorem: [Postnikov] Each X^TNN_M is homeomorphic to an open ball. The decomposition of $\text{Gr}^\text{TNN}_k(\mathbb{R}^n)$ is a CW complex.

Note: it’s conjectured that this CW complex is even nicer (the closure of each cell is homeomorphic to a ball).

Theorem: [Postnikov] X^TNN_M is the intersection of only n permuted (TNN) Schubert cells associated to c, c^2, c^3, \ldots, c^n where $c = (123 \cdots n)$ is the long cycle.

Note: One can consider the same intersection in the complex Grassmannian. This is (now) known as the Positroid. Unlike the matroid strata, they are relatively mild in singularity structure (normal, Cohen-Macaulay). See work of [Knutson-Lam-Speyer].
Some things to understand

- How to parameterize the cells (and see the gluing of cells)?
- How to index the cells (nicely)?

Answers to these questions lead to interesting combinatorial objects.
[To be continued.]