Section 4.4 The Definite Integral

Definition For any function f defined on the interval $[a, b]$, the definite integral of f from a to b is

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i^*) \Delta x$$

whenever the limit exists and is the same for any choice of test points c_i^* in the i^{th} subinterval. When the limit exists, we say that f is integrable on $[a, b]$.

Remarks

1) We have defined the sum on the right hand side as the Riemann Sum in Section 4.3 and mentioned that the sum approaches the area under f as we let $n \to \infty$. So the definite integral we have defined above gives us the area under the curve $y = f(x)$ above the x-axis when x changes from a to b. (Note that we are assuming $f(x) \geq 0$. If the area has negative sign this means the area we are interested in is below the x-axis.—More on this later)

2) Since the definite integral is ultimately a limit if we know that $\int_{a}^{b} f(x) \, dx$ exists, then to evaluate the integral we can do so by choosing a special Δx and special c_i^*.

First we will evaluate couple of integrals by using the first remark. Then we will see how we calculate an integral by using limit of a Riemann sum calculation.

Example Evaluate the integrals below by interpreting each in terms of areas.

a) Calculate $\int_{0}^{1} \sqrt{1-x^2} \, dx$

Notice first that

$$y = \sqrt{1-x^2} \Rightarrow y^2 = 1-x^2$$

$$x^2 + y^2 = 1$$

gives us a circle centered at the origin with radius one. But the area we are interested in is only $1/4$th of this circle because we want the part when x is changing from 0 to 1 as in the figure below.
We know the area of the whole circle is $\pi r^2 = \pi 1^2 = \pi$. Since we only need 1/4th of it the area we are looking for is equal to $\pi/4$ or
\[\int_0^1 \sqrt{1-x^2} \, dx = \frac{\pi}{4} \]

b) Calculate $\int_3^0 |3x-5| \, dx$

We will use the same idea as above. First plot the area we are dealing with

Note that the area asked is the sum of the areas A_1 and A_2 or
$\int_3^0 |3x-2| \, dx = A_1 + A_2$. And since both of these areas are of triangular shape we can easily calculate them

$A_1 = \frac{1}{2} \cdot 5 \cdot \frac{5}{3} = \frac{25}{6}$ and $A_2 = \frac{1}{2} \cdot 4 \cdot \frac{4}{3} = \frac{12}{6}$.

Then $\int_3^0 |3x-1| \, dx = \frac{25}{6} + \frac{12}{6} = \frac{37}{6}$
Now we will calculate the definite integrals using the definition and the tip in the second Remark, but we need a tool that will secure the existence of the integral first. And here it comes;
Theorem If \(f \) is continuous on \([a, b]\), then it is integrable on \([a, b]\).

For any curve that is continuous the area under it over a closed interval \([a, b]\) has to be finite and also term \(f(i)\Delta x \) in the Riemann Sum will always make sense i.e. defined

\[
\text{Out} = \int_a^b x \, dx
\]

Example Calculate \(\int_a^b x \, dx \) using the definition of definite integral

By the theorem above we know this integral exists because \(y = x \) is continuous everywhere hence on \([a, b]\). As we noted in Remark 2 after the definition of the definite integral since the limit exists if we choose a specific \(\Delta x \) and special \(c_i^* \)'s the limit should be equal to \(\int_a^b x \, dx \). Why? Because we can think of the Riemann Sum we got by our special choice of \(\Delta x \) and \(c_i^* \)'s as a "subsequence" of the general Riemann sum. And since the general one converges, the subsequence has to converge to the same limit, i.e the value of the integral.

We will choose \(\Delta x = \frac{b-a}{n} \) and in the below cases we will choose specific \(c_i^* \)'s. Here is how our interval looks like
Choose \(c^*_i = c_{i-1} \) Left-hand endpoint of each subinterval.

\[
\sum_{i=1}^{n} f(c^*_i) \Delta x = \sum_{i=1}^{n} c_{i-1} \cdot \frac{b-a}{n}
\]

\[
= \sum_{i=1}^{n} \left(a + (i-1) \frac{b-a}{n} \right) \cdot \frac{b-a}{n}
\]

\[
= \sum_{i=1}^{n} a \cdot \frac{b-a}{n} + \sum_{i=1}^{n} \left(\frac{b-a}{n} \right)^2 (i-1)
\]

\[
= \frac{a(b-a)}{n} n + \sum_{i=1}^{n} \left(\frac{b-a}{n} \right)^2 i - \sum_{i=1}^{n} \left(\frac{b-a}{n} \right)^2
\]

\[
= a(b-a) + \frac{(b-a)^2}{2} \frac{n(n+1)}{n} - n \left(\frac{b-a}{n} \right)^2
\]

\[
= a(b-a) + \frac{(b-a)^2}{2} \frac{n+1}{n} - \frac{(b-a)^2}{n}
\]

Take the limit \(n \to \infty \)

\[
\int_{a}^{b} x \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c^*_i) \Delta x
\]

\[
= \lim_{n \to \infty} \left(a(b-a) + \frac{(b-a)^2}{2} \frac{n+1}{n} - \frac{(b-a)^2}{n} \right)
\]

\[
= a(b-a) + \frac{(b-a)^2}{2} \cdot 1 - 0
\]

\[
= (b-a) \left[a + \frac{b-a}{2} \right] = (b-a) \left[\frac{2a+b-a}{2} \right]
\]

\[
= (b-a) \frac{b+a}{2} = \frac{b^2-a^2}{2}
\]
Choose \(c_i^* = \frac{c_{i-1} + c_i}{2} \) Mid-point of each subinterval. Note here we will replace \(\Delta x = c_i - c_{i-1} = \frac{b-a}{n} \) which is length of each subinterval to simplify our calculations.

\[
\sum_{i=1}^{n} f\left(\frac{c_{i-1} + c_i}{2} \right) \Delta x = \sum_{i=1}^{n} \frac{c_{i-1} + c_i}{2} \cdot (c_i - c_{i-1})
\]

\[
= \sum_{i=1}^{n} \frac{c_i^2 - c_{i-1}^2}{2}
\]

\[
= \frac{1}{2} \left((x_n^2 - x_0^2) + (x_2^2 - x_1^2) + (x_3^2 - x_2^2) + \ldots + (x_n^2 - x_{n-1}^2) \right)
\]

\[
= \frac{1}{2} (x_n^2 - x_0^2) = \frac{1}{2} (b^2 - a^2) \text{ because } x_n = b, x_0 = a
\]

Take the limit \(n \to \infty \)

\[
\int_a^b x \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f\left(\frac{c_{i-1} + c_i}{2} \right) \Delta x
\]

\[
= \lim_{n \to \infty} \frac{1}{2} (b^2 - a^2) = \frac{b^2 - a^2}{2}
\]

Choose \(c_i^* = c_i \) Right-hand endpoint of each subinterval.

\[
\sum_{i=1}^{n} f(c_i^*) \Delta x = \sum_{i=1}^{n} c_i \cdot \frac{b-a}{n}
\]

\[
= \sum_{i=1}^{n} \left(a + \frac{b-a}{n} \right) \cdot \frac{b-a}{n}
\]

\[
= a(b-a) + \left(\frac{b-a}{n} \right)^2 \frac{n(n+1)}{2}
\]

Take the limit \(n \to \infty \)

\[
\int_a^b x \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(c_i^*) \Delta x
\]

\[
= \lim_{n \to \infty} \left(a(b-a) + \left(\frac{b-a}{n} \right)^2 \frac{n(n+1)}{2} \right)
\]

\[
= \frac{b^2 - a^2}{2}
\]

So we have showed in three different ways \(\int_a^b x \, dx = \frac{b^2 - a^2}{2} \)
Example Show that \(\int_a^b k \, dx = k(b-a) \) for any constant \(k \).

We will use the same \(\Delta x \) as before i.e \(\Delta x = \frac{b-a}{n} \) and the right hand endpoint of each subinterval as \(c_i^* = c_i \)

\[
\sum_{i=1}^{n} f(c_i^*) \Delta x = \sum_{i=1}^{n} k \cdot \frac{b-a}{n} = k \frac{b-a}{n} \cdot n = k(b-a) \rightarrow k(b-a) \text{ as } n \rightarrow \infty
\]

Example Show that \(\int_a^b x^2 \, dx = \frac{b^3 - a^3}{3} \)

This is left as an exercise for you to prove.

Cautionary Example Let \(f(x) = \begin{cases} A & \text{if } a \leq x \leq c \\ B & \text{if } c < x \leq b \end{cases} \) where \(A < B \).

Does \(\int_a^b f(x) \, dx \) exists?

Note that \(f \) is discontinuous at \(x = c \). So our theorem does not promise us any result. But looking at the graph of \(f \) below we see that \(\int_a^b f(x) \, dx \) exits and \(\int_a^b f(x) \, dx = A_1 + A_2 = A(c-a) + B(b-c) \)

Next we will talk about a little what does "negative area" mean?

If \(f \) takes both positive and negative values as in the figure below, then the Riemann Sum is the sum of the area of the rectangles that lie above the \(x \)-axis, and the negatives of the areas of the rectangles that lie below the \(x \)-axis.
When we take the limit of such Riemann Sums, we get

$$\int_{a}^{b} f(x) \, dx = A_2 - A_1$$

where A_2 is the area of the region above the x-axis and below the graph of f and A_1 is the area of the region below the x-axis and above the graph of f.

Side Note If we are interested in the total area we need to calculate $\int_{-1}^{3} |2 - x| \, dx$

Example Evaluate the integral by interpreting each in terms of area $\int_{-1}^{3} (2 - x) \, dx$

Above we have the graph of the area we are calculating. By discussion preceding this example we know

$$\int_{-1}^{3} (2 - x) \, dx = A_1 - A_2 = \frac{3 \cdot 3}{2} - \frac{1 \cdot 1}{2} = \frac{8}{2} = 4$$
Properties of $\int_a^b f(x) \, dx$

Suppose $\int_a^b f(x) \, dx$ and $\int_a^b g(x) \, dx$ exist then

1) $\int_a^b c f(x) \, dx$ exists and $\int_a^b c f(x) \, dx = c \int_a^b f(x) \, dx$

2) $\int_a^b (f(x) \pm g(x)) \, dx = \int_a^b f(x) \, dx \pm \int_a^b g(x) \, dx$

3) $\int_a^b f(x) \, dx = -\int_b^a f(x) \, dx$

4) $\int_a^a f(x) \, dx = 0$

5) If $f(x) \geq 0$ on $[a, b]$ then $\int_a^b f(x) \, dx \geq 0$

6) If $f(x) \geq g(x)$ on $[a, b]$ then $\int_a^b f(x) \, dx \geq \int_a^b g(x) \, dx$

7) If $m \leq f(x) \leq M$ on $[a, b]$ then $m(b - a) \leq \int_a^b f(x) \, dx \leq M(b - a)$

8) $\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx$ where $a < c < b$

We will evaluate couple of integrals next using the properties of definite integrals.

Examples

1) $\int_0^1 (x - 5) \, dx = \int_0^1 x \, dx - \int_0^1 5 \, dx = \frac{1^2 - 0^2}{2} - 5(1 - 0) = \frac{-9}{2}$ by Property 2

2) $\int_0^2 6x^2 = 6 \int_0^2 x^2 \, dx = 6 \frac{2^3 - 0^3}{3} = 16$ by Property 1

3) $\int_2^0 5 dx = -\int_2^0 5 \, dx = -5(2 - 0) = -10$ by Property 3

4) $\int_2^1 x^3 \sin^{-1} x \, dx = 0$ by Property 4

5) Write the given difference of integrals as a single integral of the form $\int_a^b f(x) \, dx$.

\[\int_2^1 f(x) \, dx - \int_2^7 f(x) \, dx \]

Use Property 8 to write the first integral as $\int_2^7 f(x) \, dx = \int_2^7 f(x) \, dx + \int_7^{10} f(x) \, dx$ then

\[\int_2^{10} f(x) \, dx - \int_2^7 f(x) \, dx = \int_2^7 f(x) \, dx + \int_7^{10} f(x) \, dx - \int_2^7 f(x) \, dx = \int_7^{10} f(x) \, dx \]

6) If $\int_0^1 f(t) \, dt = 2$, $\int_0^4 f(t) \, dt = -6$ and $\int_3^4 f(x) \, dx = 1$, find $\int_1^3 f(t) \, dt$.

First note that $\int_1^3 f(t) \, dt = \int_0^3 f(t) \, dt - \int_0^1 f(t) \, dt$

And since $\int_0^4 f(t) \, dt = \int_0^3 f(t) \, dt + \int_3^4 f(t) \, dt$ by Property 8

$\int_0^3 f(t) \, dt = -6 - 1 = -7$, $\int_1^3 f(t) \, dt = -7 - 2 = -9$
7) Use Properties of integrals to verify the inequality below without evaluating the integrals.

\[\int_1^2 \sqrt{5-x} \, dx \geq \int_1^2 \sqrt{x+1} \, dx \]

We will use the Property 6 above to prove the inequality. So we have to show \(\sqrt{5-x} \geq \sqrt{x+1} \) on the interval \([1, 2]\). And we show this below: On this interval

\[2 \geq x \Rightarrow 2+2 \geq x+x \Rightarrow 5-1 = 4 \geq x+x \Rightarrow 5-x \geq x+1 \Rightarrow \sqrt{5-x} \geq \sqrt{x+1} \]

Note that we may take the square root of both sides because \(x \geq 1 \Rightarrow x + 1 \geq 2 > 0 \)

Hence by Property 6 \(\int_1^2 \sqrt{5-x} \, dx \geq \int_1^2 \sqrt{x+1} \, dx \).

8) Use Properties of integrals to verify the inequality below without evaluating the integrals.

\[\frac{\pi}{6} \leq \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin x \, dx \leq \frac{\pi}{3} \]

We will use the Property 6 to verify this inequality. And we need to find the two bounds \(m \) and \(M \) first to be able to use this property. Since the integral we are trying to find bounds for is for \(\sin x \) on the interval \([\frac{\pi}{6}, \frac{\pi}{2}]\) we will plot the graph of the it on this interval.

From the graph we observe that \(\frac{1}{2} \leq \sin x \leq 1 \) on \([\frac{\pi}{6}, \frac{\pi}{2}]\). So \(m = \frac{1}{2} \) and \(M = 1 \). Then by Property 6

\[\frac{1}{2} (\frac{\pi}{2} - \frac{\pi}{6}) \leq \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin x \, dx \leq 1 \cdot (\frac{\pi}{2} - \frac{\pi}{6}) \Rightarrow \frac{\pi}{6} \leq \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \sin x \, dx \leq \frac{\pi}{3} \]
9) Use Properties of integrals to verify the inequality below without evaluating the integral.

\[\int_{0}^{\pi/2} x \sin x \, dx \leq \frac{\pi^2}{8} \]

We will use Property 6 to prove the result. Since \(\sin x \leq 1 \) for \(x \) in \([0, \pi/2] \).

So \(x \sin x \leq x \cdot 1 = x \) on this interval. Hence

\[\int_{0}^{\pi/2} x \sin x \, dx \leq \int_{0}^{\pi/2} x \, dx \leq \frac{\left(\frac{\pi}{2}\right)^2}{2} - 0^2 = \frac{\pi^2}{8} \]

10) Use Property 7 to evaluate the integral \(\int_{0}^{3} (x^2 + 2x) \, dx \)

To use Property 7 again we need to find the lower and upper bounds \(m \) and \(M \) for the function \(y = x^2 + 2x \). As before we could use the graph of this function to figure these bounds but instead I would like to use Calculus and what we learnt so far to show another way of finding these bounds. Finding \(m \) and \(M \) can be thought of finding the absolute maximum and minimum of \(y = x^2 + 2x \) over the interval \([-3, 0] \). Since we have a continuous polynomial function we may use EVT and we know \(y = x^2 + 2x \) has an absolute maximum and minimum on this interval. So \(f'(x) = 2x + 2 = 0 \Rightarrow x = -1 \) then comparison gives \(f(-3) = 9 - 6 = 3 \) absolute max

\(f(-1) = 1 - 2 \) absolute min

\(f(0) = 0 \)

Hence \(-1 \leq x^2 + 2x \leq 3 \) on \([-3,0]\). Using Property 7 now we get

\[-1(0 + 3) \leq \int_{-3}^{0} (x^2 + 2x) \, dx \leq 3(0 + 3) \Rightarrow -3 \leq \int_{-3}^{0} (x^2 + 2x) \, dx \leq 9 \]
Average Value of a Function and Mean Value Theorem for Integrals

Recall: Given a set of values \(y_1, y_2, ..., y_n \) the average of these values is defined as \(y_{\text{avg}} = \frac{y_1 + y_2 + ... + y_n}{n} \).

Consider a Riemann Sum for a definite integral

\[
\sum_{i=1}^{n} f(i) \cdot \frac{b - a}{n} = (b - a) \sum_{i=1}^{n} \frac{f(i)}{n}
\]

Note that the fraction \(\frac{f(i)}{n} \) in the sum on the right hand side is the Average of the function \(f \) at \(n \)-test points. This observation leads us to a more interesting one below

\[
\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} f(i) \cdot \frac{b - a}{n} = (b - a) \lim_{n \to \infty} \sum_{i=1}^{n} \frac{f(i)}{n}
\]

Divide this equation by \(b - a \)

\[
\frac{1}{b - a} \int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{i=1}^{n} \frac{f(i)}{n}
\]

So the right hand side expression in the limit gives us the Average value of \(f \) on \([a, b]\). So based on this argument

Definition If \(f \) is integrable on the interval \([a, b]\), then the **average value of** \(f \) on \([a, b]\) is

\[
f_{\text{avg}} = \frac{1}{b - a} \int_{a}^{b} f(x) \, dx
\]

Mean Value Theorem for Integrals If \(f \) is continuous on the interval \([a, b]\), then there is a \(c \) in \((a, b)\) such that

\[
f(c) = \frac{1}{b - a} \int_{a}^{b} f(x) \, dx
\]