SOLUTIONS Section 9.1

1. \(A = \begin{bmatrix}
1 & -3/2 & 0 \\
-3/2 & 3 & -2 \\
0 & -2 & 8 \\
\end{bmatrix} \) and \(q = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \begin{bmatrix}
x \\
y \\
z \\
\end{bmatrix} \)

2. \(q = 2x^2 + 6y^2 + 9z^2 + 6xy + 8xz + 14yz \)

3. \[
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 3/2 & 0 \\
0 & 0 & 0 & 0 & 3/2 \\
\end{bmatrix}
\]

4. \(x_1^2 + 5x_2^2 + 6x_4^2 + 4x_1x_2 + 6x_1x_3 + 8x_1x_4 + 6x_3x_4 \)

5. \(P = \begin{bmatrix} 3 & 2 \\ 1 & -1 \end{bmatrix} \)

(a) old matrix \(A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \), new matrix = \(P^T A P = \begin{bmatrix} 24 & 1 \\ 1 & -1 \end{bmatrix} \)

\(q = 24x^2 + 2xy - y^2 \) in the new coord system

(b) \[
\begin{bmatrix} x \\ y \end{bmatrix} = P \begin{bmatrix} X \\ Y \end{bmatrix}
\]

\(x = 3X + 2Y, \ y = X - Y \)

\(q = (3X + 2Y)^2 + 4(3X + 2Y)(X - Y) + 3(X - Y)^2 = 24X^2 + 2XY - Y^2 \)

(c) Using \(X,Y \) coords. Substitute \(X = 1, Y = 2 \) into the new \(q \) formula to get \(q = 24 + 4 - 4 = 24 \).

Using \(x,y \) coords. First get the \(x,y \) coords.

\(P \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 7 \\ -1 \end{bmatrix} \) so the old coords of \(B \) are \(x = 7, \ y = -1 \).

Substitute \(x = 7, y = -1 \) into the old \(q \) formula to get \(q = 49 - 28 + 3 = 24 \) again.

6. (a) Solve for \(x \) and \(y \) to get \(x = \frac{1}{2}(X + Y), \ y = \frac{1}{2}(Y - X) \). Then substitute:

\(q = \frac{1}{4} (X + Y)^2 + 3 \frac{1}{4}(X + Y)(Y - X) - 5 \frac{1}{4}(Y - X)^2 = - \frac{7}{4}X^2 + 3XY - \frac{1}{4}Y^2 \)

(b) Let \(P \) be the usual basis changing matrix (which converts from new to old coords). We know that

\[
\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
\]

• this is \(P^{-1} \)

Take the inverse of \(P^{-1} \) to get \(P = \begin{bmatrix} 1/2 & 1/2 \\ -1/2 & 1/2 \end{bmatrix} \).

The new basis vectors are \(u = (1/2, -1/2), \ v = (1/2, 1/2). \)

(c) The (old) matrix for \(q \) is \(A = \begin{bmatrix} 1 & 3/2 \\ 3/2 & -5 \end{bmatrix} \)

Let \(P \) be the basis changing matrix from part (b) that converts \(x,y \) coords to \(X,Y \) coords.
The matrix for \(q \) in the new coord system is \(P^TAP = \begin{bmatrix} -7/4 & 3/2 \\ 3/2 & -1/4 \end{bmatrix} \).

So \(q = -\frac{7}{4}x^2 + 3xy - \frac{1}{4}y^2 \) again.

(d) The old matrix is \(A = \begin{bmatrix} 1 & 3/2 \\ 3/2 & -5 \end{bmatrix} \); \(q = \begin{bmatrix} x \\ y \end{bmatrix}A \begin{bmatrix} x \\ y \end{bmatrix} \)

(e) The new matrix is \(B = \begin{bmatrix} -7/4 & 3/2 \\ 3/2 & -1/4 \end{bmatrix} \); \(q = \begin{bmatrix} x \\ y \end{bmatrix}B \begin{bmatrix} x \\ y \end{bmatrix} \)

(f) \(P^TAP = B \)

7. (a) \(q = (2X-Y)^2 + 4(2X-Y)(X+3Y) - (X+3Y)^2 = 11x^2 + 10xy - 20y^2 \)

(b) Let \(P \) be the usual basis changing matrix (which converts from new to old coords). We know that

\[
\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}
\]

\text{this is the basis-changing matrix } P

The new basis vectors are \(u = (2,1) \), \(v = (-1,3) \).

(c) The (old) matrix for \(q \) is \(A = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \).

Let \(P \) be the basis changing matrix from part (b) that converts \(X,Y \) coords to \(x,y \) coords.

The matrix for \(q \) in the new coord system is

\(P^TAP = \begin{bmatrix} 2 & 1 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} 11 & 5 \\ 5 & -20 \end{bmatrix} \)

So \(q = 11x^2 + 10xy - 20y^2 \) again.

8. The new basis vectors \(u \) and \(v \) are unit vectors (because the scale in the new coord system is the same as the scale in the old system) pointing along the X-axis and Y-axis respectively:

\(u = (1,0) \)

\(v = (1,1)_\text{unit} = \left(\frac{1}{\sqrt{2}} , \frac{1}{\sqrt{2}} \right) = \left(\frac{1}{2} \sqrt{2} , \frac{1}{2} \sqrt{2} \right) \)

Let

\(P = \begin{bmatrix} 1 \\ \sqrt{2}/2 \\ 0 \\ \sqrt{2}/2 \end{bmatrix} \)

Problem 8

(a) Old matrix = \(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \), new matrix = \(p^T \) old \(P = \begin{bmatrix} 1 & \sqrt{2}/2 \\ \sqrt{2}/2 & 1 \end{bmatrix} \)

\(q = x^2 + y^2 + \sqrt{2}xy \)

(b) New matrix for \(q = \begin{bmatrix} 0 & 1/2 \\ 1/2 & 0 \end{bmatrix} = p^T \text{ old } P \)

old = \((p^T)^{-1} \) new \(p^{-1} = (p^{-1})^T \) new \(p^{-1} = \begin{bmatrix} 0 & \sqrt{2}/2 \\ \sqrt{2}/2 & -\sqrt{2} \end{bmatrix} \)

\(q = -\sqrt{2}y^2 + \sqrt{2}xy \)

(c) From part (a), \(x^2 + y^2 = x^2 + y^2 + \sqrt{2}xy \). So the circle has equation
\[x^2 + y^2 + \sqrt{2}xy = 1 \] in the new coord system.

9. (a) method 1

When you change scales like this, the new coords \(X, Y\) and old coords \(x, y\) are related by \(X = \frac{1}{12}x, Y = 2y\) (Section 24). So \(x = 12X, y = \frac{1}{2}Y\) and

\[
q = 2(12X)^2 + 3(12X)(\frac{1}{2}Y) + 4(\frac{1}{2}Y)^2 = 288X^2 + 18XY + Y^2
\]

method 2

The new basis vectors are \(u = 12i, v = \frac{1}{2}j\). So \(P = \begin{bmatrix} 12 & 0 \\ 0 & \frac{1}{2} \end{bmatrix}\)

New matrix = \(P^T \begin{bmatrix} 2 & 3/2 \\ 3/2 & 4 \end{bmatrix} P = \begin{bmatrix} 288 & 9 \\ 9 & 1 \end{bmatrix}\) so \(q = 288X^2 + 18XY + Y^2\)
SOLUTIONS Section 9.2

1. (a) (i) \(q \) has matrix \(A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} \).

The eigenvalues of \(A \) are \(2, -3 \) so \(q = 2x^2 - 3y^2 \).
The corresponding eigenvectors are \((2,1), (-1,2)\).
Orthonormal eigenvectors are \(u = \left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right), v = \left(-\frac{1}{\sqrt{5}}, 2\sqrt{5} \right) \).
The coord system in which \(q \) is \(2x^2 - 3y^2 \) has basis vectors \(u, v \).

(ii) \(\begin{bmatrix} x \\ y \end{bmatrix} = P \begin{bmatrix} X \\ Y \end{bmatrix} \) where \(P = \begin{bmatrix} u & v \end{bmatrix} \) so the change of variable is
\[
x = \frac{2}{\sqrt{5}} X - \frac{1}{\sqrt{5}} Y, \quad y = \frac{1}{\sqrt{5}} X + \frac{2}{\sqrt{5}} Y
\]

(iii) The old matrix for \(q \) was found in part (i); \(q = \begin{bmatrix} x & y \end{bmatrix} A \begin{bmatrix} x \\ y \end{bmatrix} \)

(iv) The new matrix for \(q \) is \(B = \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix} \); \(q = \begin{bmatrix} X & Y \end{bmatrix} B \begin{bmatrix} X \\ Y \end{bmatrix} \)

(v) \(B = P^T A P \) where \(P = \begin{bmatrix} u & v \end{bmatrix} \).

(b) Use the orthonormal coord system from part (a) with basis \(u, v \). In the new system, the equation is \(2x^2 - 3y^2 = 2 \).
The graph is a hyperbola whose major axis is the \(X \)-axis, the line \(y = \frac{1}{2} x \). The vertices are \((\pm 1,0)) \) which in the original coord system are \(\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}} \right) \) and \(\left(-\frac{2}{\sqrt{5}}, -\frac{1}{\sqrt{5}} \right) \).

2. (a) Let \(q = 2x^2 + 2y^2 + 3z^2 + 4xy + 2xz + 2yz \). Matrix for \(q \) is \(\begin{bmatrix} 2 & 2 & 1 \\ 2 & 2 & 1 \\ 1 & 1 & 3 \end{bmatrix} \).

Eigenvalues are 2, 5, 0 with corresponding eigenvectors \(u = (-1,-1,2), \ v = (1,1,1), \ w = (1,-1,0) \)

They are already orthog. Normalize them to get orthonormal basis vectors. In this new orthonormal coord system, \(q = 2x^2 + 5y^2 \) so the equation is \(2x^2 + 5y^2 = 9 \).
It's an elliptic cylinder with its axis along the \(Z \)-axis (see the diagram).

(b) If you use another method of diagonalizing, the new coord system won't necessarily be orthonormal. And if it isn't then you can't tell a circular cylinder from an elliptical cylinder (great tragedy).
(c) Let \(P = \begin{bmatrix} \text{unit} & \text{unit} & \text{unit} \end{bmatrix} = \begin{bmatrix} -1/\sqrt{6} & 1/\sqrt{3} & 1/\sqrt{2} \\ -1/\sqrt{6} & 1/\sqrt{3} & -1/\sqrt{2} \\ 2/\sqrt{6} & 1/\sqrt{3} & 0 \end{bmatrix} \)

Then

\[
\begin{bmatrix} x \\ y \\ z \end{bmatrix} = P \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}
\]

so

\[
x = -\frac{1}{\sqrt{6}} X + \frac{1}{\sqrt{3}} Y + \frac{1}{\sqrt{2}} Z,\quad y = -\frac{1}{\sqrt{6}} X + \frac{1}{\sqrt{3}} Y - \frac{1}{\sqrt{2}} Z,\quad z = \frac{2}{\sqrt{6}} X + \frac{1}{\sqrt{3}} Y.
\]

To solve for \(X,Y,Z \) in terms of \(x,y,z \) take advantage of the fact that \(P^{-1} = P^T \) since \(P \) is an ortho matrix. So

\[
\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = P^{-1} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = P^T \begin{bmatrix} x \\ y \\ z \end{bmatrix}
\]

\[
X = -\frac{1}{\sqrt{6}} x - \frac{1}{\sqrt{3}} y + \frac{2}{\sqrt{6}} z,\quad Y = \frac{1}{\sqrt{3}} x + \frac{1}{\sqrt{3}} y + \frac{1}{\sqrt{3}} z,\quad Z = \frac{1}{\sqrt{6}} x - \frac{1}{\sqrt{2}} y
\]

(d) Same q as in part (b) so the equation is \(2x^2 + 5y^2 = -9 \). Graph is empty (no points satisfy the equation).

3. (a) Let \(A = \begin{bmatrix} 1 & 2 \\ 2 & -2 \end{bmatrix} \).

Do ops \(R_2 = -2R_1 + R_2 \), \(C_2 = -2C_1 + C_2 \) on \(A \) to get \(\begin{bmatrix} 1 & 0 \\ 0 & -6 \end{bmatrix} \).

Do the col op on \(I \) to get \(P = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \).

Then \(q = x^2 - 6y^2 \) in the coord system with basis vectors \(u = (1,0), v = (-2,1) \).

(b) \(\begin{bmatrix} x \\ y \end{bmatrix} = P \begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} \) so \(x = X - 2Y, y = Y \).

The check is that \((X-2Y)^2 + 4(X-2Y)Y - 2Y^2 \) does equal \(x^2 - 6y^2 \).

(c) \(P^TAP = \begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & -6 \end{bmatrix} \) which is what I got with the row/col op method.

4. Do these row/col ops on \(A \).

\(R_2 = -R_1 + R_2, \ C_2 = -C_1 + C_2 \)

\(R_3 = -2R_1 + R_3, \ C_3 = -2C_1 + C_3 \)

\(R_3 = -\frac{3}{2} R_2 + R_3, \ C_3 = -\frac{3}{2} C_2 + C_3 \)

\[
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1/2 \end{bmatrix}
\]

and get
This is enough to diagonalize q but if you want ± 1's keep going.

Divide Row 2 by $\sqrt{2}$, divide Col 2 by $\sqrt{2}$. Multiply Row 3 by $\sqrt{2}$, multiply Col 3 by $\sqrt{2}$ and get

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Do all the col ops to I to get

$$P = \begin{bmatrix} 1 & -1\sqrt{2} & -1/\sqrt{2} \\ 0 & 1\sqrt{2} & -3/\sqrt{2} \\ 0 & 0 & \sqrt{2} \end{bmatrix}$$

In the coord system with the cols of P as the basis vectors, $q = x^2 + y^2 + z^2$.

(b) $\begin{bmatrix} x \\ y \\ z \end{bmatrix} = P \begin{bmatrix} x \\ Y \\ Z \end{bmatrix}$ so $x = \frac{1}{\sqrt{2}} x - \frac{1}{\sqrt{2}} Y - \frac{1}{\sqrt{2}} Z, y = \frac{1}{\sqrt{2}} Y - \frac{3}{\sqrt{2}} Z, z = \sqrt{2} Z$.

5. Use row/col ops to diagonalize.

$$R_3 = -R_1 + R_3; C_3 = -C_1 + C_3$$
$$R_3 = -3R_2 + R_3; C_3 = -3C_2 + C_3$$

Matrix becomes $\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -7 \end{bmatrix}$.

The diagonal has 2 positive and 1 negative entry. So there are 2 positive eigenvalues and one negative eigenvalue.

6. First, use the given information to get a diagonal version of q.

$$q = \frac{1}{3} x^2 - 4 y^2$$ in a coord system with basis $u = (\begin{smallmatrix} -4/5 \\ 3/5 \end{smallmatrix}), v = (\begin{smallmatrix} 3/5 \\ 4/5 \end{smallmatrix})$.

(Remember to normalize the orthogonal eigenvectors.)

Now that q is diagonal, here are two ways to get the diagonal coeffs to be ± 1's.

method 1 (row/col ops) The matrix for q w.r.t. basis u,v is $A = \begin{bmatrix} 1/3 & 0 \\ 0 & -4 \end{bmatrix}$.

Do the row/col ops

- multiply row 1 by $\sqrt{3}$; mult col 1 by $\sqrt{3}$
- divide row 2 by 2; divide col 2 by 2.

on A to get $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$.

Let $P = \begin{bmatrix} -4/5 & 3/5 \\ 3/5 & 4/5 \end{bmatrix}$. Do the col ops on P to get

$$Q = \begin{bmatrix} -4\sqrt{3}/5 & 3/10 \\ 3\sqrt{3}/5 & 4/10 \end{bmatrix}.$$

Then $q = x^2 - y^2$ in a coord system with basis vectors

$u_1 = (\begin{smallmatrix} -4\sqrt{3}/5 \\ 3\sqrt{3}/5 \end{smallmatrix}), v_1 = (3/10, 4/10)$ (the cols of Q).

method 2 for continuing (mostly by inspection and a little algebra)

$$q = \frac{1}{3} x^2 - 4 y^2$$ in a coord system with basis $u = (\begin{smallmatrix} -4/5 \\ 3/5 \end{smallmatrix}), v = (\begin{smallmatrix} 3/5 \\ 4/5 \end{smallmatrix})$.

q can be rewritten as $\left(\frac{1}{\sqrt{3}} x\right)^2 - (2\sqrt{3}/5 y)^2$.

Let $X_1 = \frac{1}{\sqrt{3}} x, Y_1 = 2\sqrt{3}/5 y$. Then $q = X_1^2 - Y_1^2$ in a new X_1, Y_1 coord system.
Now I just have to get the new basis vectors u_1 and v_1.

The change of variable from X,Y to X_1,Y_1 just changed the scales on the X-axis and Y-axis (see (5), (6), (7) in Section 2.4):

X_1-scale $= \sqrt{3}$ X-scale

Y_1-scale $= \frac{1}{2}$ Y-scale

$u_1 = \sqrt{3} \ u = (-4\sqrt{3}/5, 3\sqrt{3}/5)$

$v_1 = \frac{1}{2} \ v = (3/10, 4/10)$

7. (a) $q = (x^2 + 4xy + 4y^2) - 2y^2 - 4y^2$

$= (x+2y)^2 - 6y^2$

$= X^2 - 6Y^2$

where

$X = x + 2y$, $Y = y$

$$
\begin{bmatrix}
X \\
Y
\end{bmatrix} = \begin{bmatrix}
1 & 2 \\
0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix}
$$

p^{-1}

The new basis vectors are $u = (1,0)$, $v = (-2,1)$

(b) $q = 2(x^2 + \frac{3}{2}xy) + y^2$

$= 2(x^2 + \frac{3}{2}xy + \frac{9}{16}y^2) + y^2 - \frac{9}{8}y^2$

$= 2(x + \frac{3}{4}y)^2 - \frac{1}{8}y^2$

$= 2X^2 - \frac{1}{8}Y^2$

where

$X = x + \frac{3}{4}y$, $Y = y$

$$
\begin{bmatrix}
X \\
Y
\end{bmatrix} = \begin{bmatrix}
1 & \frac{3}{4} \\
0 & 1
\end{bmatrix} \begin{bmatrix}
x \\
y
\end{bmatrix}
$$

$p^{-1} = \begin{bmatrix}
1 & \frac{3}{4} \\
0 & 1
\end{bmatrix}$, $p = \begin{bmatrix}
1 & -\frac{3}{4} \\
0 & 1
\end{bmatrix}$

The new basis vectors are $u = (1,0)$, $v = (-3/4, 1)$

(c) $q = 3 \begin{bmatrix} x^2 + (2y+6z)x \end{bmatrix} - 6y^2 + z^2$

The coeff of x in the brackets is $2y+6z$. Take half, square it and add it on to complete the square.

$= 3 \begin{bmatrix} x + y + 3z \end{bmatrix}^2 - 6y^2 + z^2 - 3(y+3z)^2$

$= 3 \begin{bmatrix} x + y + 3z \end{bmatrix}^2 - 9y^2 - 18yz - 26z^2$

The coeff of y in the second bracket is $2z$. Take half, square it and add it on to complete the square.
\[q = 3 \left[x + y + 3z \right]^2 - 9 \left[y^2 + 2zy + z^2 \right] - 26z^2 + 9z^2 \\
= 3 \left[x + y + 3z \right]^2 - 9 \left[y + z \right]^2 - 26z^2 + 9z^2 - 17z^2 \\
= 3x^2 - 9y^2 - 17z^2 \]

where

\[X = x + y + 3z, \quad Y = y + z, \quad Z = z. \]

Then

\[
\begin{bmatrix}
X \\
Y \\
Z
\end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\
y \\
z \end{bmatrix},
\]

\[
p^{-1} = \begin{bmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}, \quad P = \begin{bmatrix} 1 & -1 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{(I used Mathematica to invert)}
\]

so the new basis vectors are \(u = (1,0,0), \quad v = (-1,1,0), \quad w = (-2,-1,1). \)

(d) \[q = 3 \left[x^2 + \frac{2y+5z}{3} x \right] + y^2 + 4z^2 + 6yz \]

In the bracket, the coeff of \(x \) is \(\frac{2y+5z}{3} \). Take half, square it and add it on to complete the square.

\[
q = 3 \left[x + \frac{2y+5z}{6} \right]^2 + y^2 + 4z^2 + 6yz - \frac{3}{6} \left(\frac{2y+5z}{6} \right)^2 \\
= 3 \left[x + \frac{2y+5z}{6} \right]^2 + \frac{2}{3} y^2 + \frac{13}{3} yz + \frac{23}{12} z^2 \\
= 3 \left[x + \frac{2y+5z}{6} \right]^2 + \frac{2}{3} \left[y^2 + \frac{13}{2} z y \right] + \frac{23}{12} z^2
\]

In the second bracket, the coeff of \(y \) is \(\frac{13}{2} z \). Take half, square it and add it on to complete the square.

\[
q = 3 \left[x + \frac{2y+5z}{6} \right]^2 + \frac{2}{3} \left[y + \frac{13}{4} z \right]^2 + \frac{23}{12} z^2 - \frac{2}{3} \left(\frac{13}{4} z \right)^2 \\
= 3 \left[x + \frac{2y+5z}{6} \right]^2 + \frac{2}{3} \left[y + \frac{13}{4} z \right]^2 - \frac{41}{8} z^2
\]

Let \(X = x + \frac{1}{3} y + \frac{5}{6} z, \quad Y = y + \frac{13}{4} z, \quad Z = z. \) Then \(q = 3x^2 + \frac{2}{3} y^2 - \frac{41}{8} z^2. \)

\[
\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} = \begin{bmatrix} 1 & 1/3 & 5/6 \\ 0 & 1 & 13/4 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\
y \\
z \end{bmatrix}.
\]

Invert \(p^{-1} \) to get \(P \). The new basis vectors are the cols of \(P \).
1. *method 1* Do these row/col ops

\[
\begin{align*}
R_2 &= -\frac{1}{2} R_1 + R_2, & C_2 &= -\frac{1}{2} C_1 + C_2 \\
R_3 &= -\frac{1}{2} R_1 + R_3, & C_3 &= -\frac{1}{2} C_1 + C_3 \\
R_3 &= R_2 + R_3, & C_3 &= C_2 + C_3
\end{align*}
\]

A turns into

\[
\begin{bmatrix}
2 & 0 & 1 \\
0 & \frac{1}{2} & 0 \\
0 & 0 & 0
\end{bmatrix}
\]

The diagonal entries are ≥ 0 so A is positive semi-definite (and one diagonal entry actually is 0 so A is not positive definite).

method 2 The αθm's are \(\det[2] = 2\), \[
\begin{bmatrix}
2 & 1 \\
1 & 1
\end{bmatrix}
\]

= 1, \(|A| = 0\).

The αθm's are ≥ 0 so A is positive semi-def (and not positive definite).

method 3

\[
\begin{vmatrix}
2-\lambda & 1 & 1 \\
1 & 1-\lambda & 0 \\
1 & 0 & 1-\lambda
\end{vmatrix}
= (2-\lambda)(1-\lambda)(1-\lambda) - (1-\lambda) - (1-\lambda) = (1-\lambda)(\lambda^2 - 3\lambda)
\]

Eigenvalues are 1, 0, 3, all ≥ 0 and one actually is 0 so A is positive semi-def (and not positive definite).

2. Many methods available. For 2 × 2 matrices using αθm's is fastest.

(a) \(\det[2] = 2\), \[
\begin{bmatrix}
2 & 1 \\
1 & 2
\end{bmatrix}
\]

= 3. The αθm's are positive so matrix is pos def.

(b) \(\det[1] = 1\), \[
\begin{bmatrix}
1 & 2 \\
2 & 1
\end{bmatrix}
\]

= -3. Matrix is indefinite.

3. False (it's true for a diagonalized q, with only square terms, but not necessarily true otherwise). As a counterexample, let q = 2x^2 + 4xy + y^2. Then Q is negative when x = -1, y = 1 so q is not positive definite.

4. (a) Let q be the quadratic form with matrix A. Then -A has quadratic form -q.

For example, if \(A = \begin{bmatrix} a & b \\ b & c \end{bmatrix}\) then the quadratic form with matrix A is \(ax^2 + 2bxy + cy^2\) and the quadratic form with matrix -A is \(-ax^2 - 2bxy - cy^2\).

If A is neg definite then \(q < 0\) (except at the origin) so -q > 0 (except at the origin) so -A is positive definite.

(b) The αθm's of A have signs + - + - + etc.

What happens to the αθm's when you multiply A by -1.

Remember that when you multiply an n × n matrix by -1, the determinant is multiplied by \((-1)^n\). That means it stays the same if n is even and changes sign if n is odd.

So the first αθm, a 1 × 1 det which was negative, changes sign.

The second αθm, a 2 × 2 det which was positive, doesn't change sign.

The third αθm, a 3 × 3 det which was negative, changes sign. And so on.

So the αθm's of -A are all positive. So -A is positive definite.

5. *method 1* Let q be the quadratic form corresponding to A. Then 3A corresponds to quadratic form 3q.

If q > 0 (except at the origin) then 3q > 0 (except at the origin)

So if A is positive definite then 3A is also positive definite.

method 2 The αθm's of A are positive

When you multiply A by 3, you multiply the first αθm by 3, the second αθm by 3^2, the third αθm by 3^3 etc. The new αθm's are still positive so 3A is positive definite too.
6. (a) A is negative definite (the diagonal form of \(q \) has all negative coeffs). So the eigenvalues are negative (not necessarily the numbers \(-2, -3, -5\), but all negative).

\[|A| \text{ is negative.} \]

\text{\textit{reason 1}} it's the product of the 3 negative eigenvalues

\text{\textit{reason 2}} \(|A|\) is the 3rd \(\text{OPM}\) and the signs of the \(\text{OPM}\)'s are \(-+−\)

(b) A is indefinite; A has two positive eigenvalues and one negative eigenvalue; \(|A|\) is the product of the eigenvalues so it's negative.

7. (a) \((B^T B)^T = B^T B^T = B^T B\). So \(B^T B\) is symmetric.

(b) Let \(\vec{x}\) be the col vector of variables. Then \(q = x^T (B^T B) x\)

(c) \(q = x^T (B^T B) x = (Bx)^T Bx \) \(\text{(T rule)}\)

\[= \|Bx\|^2 \] \((\text{connection between dotting vectors and multiplying matrices})\)

\[\geq 0 \] \((\text{since norms are never negative})\)

So \(q\) is positive semi-definite.

8. (a) True. \text{\textit{reason 1}} \(|A|\) is one of the \(\text{OPM}\)'s and all the \(\text{OPM}\)'s are positive.

\text{\textit{reason 2}} All the eigenvalues of \(A\) are positive and \(|A|\) is the product of the eigenvalues.

(b) False. A counterexample is \(A = \begin{bmatrix} -2 & 0 \\ 0 & -3 \end{bmatrix}\).

\(|A|\) is positive but \(A\) is negative definite (its \(\text{OPM}\)'s are \(-2, +6\)).

9. The matrix for \(q\) is \(\begin{bmatrix} 2 & h/2 \\ h/2 & 3 \end{bmatrix}\). The \(\text{OPM}\)'s are 2 and \(6 - \frac{1}{4} h^2\).

(a) \(q\) is positive def iff \(6 - \frac{1}{4} h^2 > 0, \; -\sqrt{24} < h < \sqrt{24}\)

(b) \(q\) is positive semi-def iff \(6 - \frac{1}{4} h^2 > 0, \; -\sqrt{24} \leq h \leq \sqrt{24}\)

(c) \(q\) is positive semi-def but not pos def iff \(h = \pm \sqrt{24}\)

(d) \(q\) is indefinite iff \(6 - \frac{1}{4} h^2 < 0, \; h > \sqrt{24}\) or \(h < -\sqrt{24}\)

(e) Can never have \(q\) negative definite.

10. (a) \text{\textit{proof 1}}

\text{Step 1} The eigenvalues of \(A\) are nonzero. That's because a positive definite matrix always has positive eigenvalues which means that as a by-product, the eigenvalues are nonzero.

\text{Step 2} A matrix with nonzero eigenvalues is invertible (see the latest invertible list in Section 8.2).

\text{\textit{proof 2}} The \(\text{OPM}\)'s of \(A\) are positive. But the last \(\text{OPM}\) is \(|A|\) itself. So \(|A| \neq 0\) so \(A\) is invertible.

(b) The converse (that if \(A\) is invertible then it is positive definite) is false. As a counterexample, the matrix \(-I\) is invertible but isn't positive def (it's neg def).

(c) First I'll show that the eigenvalues of \(A^{-1}\) and \(A\) are reciprocals of one another.

Suppose \(\lambda\) is an eigenvalue of \(A\) with corresponding eigenvector \(u\).

Then \(A u = \lambda u\) where \(u \neq \vec{0}\) so \(u = A^{-1} \lambda u = \lambda A^{-1} u\).

\(\lambda \neq 0\) since \(A\) is invertible so it's safe to divide by \(\lambda\) to get \(A^{-1} u = \frac{1}{\lambda} u\).
This makes \(\mathbf{u} \) an eigenvector of \(\mathbf{A}^{-1} \) with corresponding eigenvalue \(1/\lambda \).
So \(\mathbf{A} \) and \(\mathbf{A}^{-1} \) have reciprocal eigenvalues.

So if the eigenvalues of \(\mathbf{A} \) are positive then the eigenvalues of \(\mathbf{A}^{-1} \) must also be positive. So if \(\mathbf{A} \) is positive definite then so is \(\mathbf{A}^{-1} \) QED.

11. (a) True. Here's a proof by contradiction.
 The quadratic form with matrix \(\mathbf{A} \) is
 \[
 q = ax^2 + dy^2 + fz^2 + 2bx y + 2cxz + 2eyz.
 \]
 Suppose \(d \) was negative. Then \(q \) would be negative when \(x=0, y=1, z=0 \) which contradicts the fact that \(\mathbf{A} \) is positive definite.
 Suppose \(d \) was zero. Then \(q = 0 \) when \(x=0, y=0, z=1 \) which again contradicts the fact that \(\mathbf{A} \) is positive definite.
 So \(d \) must be positive. Similarly, \(a \) and \(f \) must be positive.

 (b) False. Here's a counterexample. Let
 \[
 \mathbf{A} = \begin{bmatrix}
 1 & 2 & . \\
 2 & 1 & . \\
 . & . & 1
 \end{bmatrix}
 \]
 be positive but \(\mathbf{A} \) is not positive definite. One reason is that the second \(\mathbf{0} \) term is not positive. Another reason is that the quadratic form with matrix \(\mathbf{A} \) is
 \[
 q = x^2 + y^2 + z^2 + 4xy + \text{who cares. It is negative when } x=1, y=-1, z=0.
 \]
SOLUTIONS review problems for Chapter 9

1. q has matrix $A = \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}$.

 (a) (i) The new basis just amounts to a change of scale on the old axes (see "special case where only the scale changes" in §2.4).
 So $X = \frac{1}{2} x$, $Y = 3y$; $x = 2X$, $y = \frac{1}{3} y$. So

 $q = 2x^2 - 4xy + 5y^2 = 2(2X)^2 - 4(2X)(\frac{1}{3}Y) + 5(\frac{1}{3}Y)^2 = 8X^2 - \frac{8}{3} XY + \frac{5}{9} Y^2$

 (ii) Let $P = \begin{bmatrix} 2 & 0 \\ 0 & 1/3 \end{bmatrix}$. Then

 new matrix for q is $P^TAP = \begin{bmatrix} 8 & -4/3 \\ -4/3 & 5/9 \end{bmatrix}$. So $q = 8x^2 - \frac{8}{3} XY + \frac{5}{9} Y^2$.

(b) method 1

 Eigenvalues are λ are 6,1 with corresponding eigenvectors $(1,-2)$, $(2,1)$. They are already orthogonal. Normalize them to get

 $u = (\frac{1}{\sqrt{5}}, -\frac{2}{\sqrt{5}})$, $v = (\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}})$

 With basis u,v, $q = 6X^2 + Y^2$.

 If you use the eigenvectors $(1,-2)$ and $(2,1)$ as the basis, without normalizing them, then q is still diagonal but it's $30X^2 + 5Y^2$, not $6X^2 + Y^2$.

 method 2

 Do row/col op $R_2 = R_1 + R_2$, $C_2 = C_1 + C_2$. A turns into $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$

 Do the col op to I and get $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$. With new basis $u = (1,0)$, $v = (1,1)$ (don't normalize) the quadratic form is $q = 2x^2 + 3y^2$.

 If you want to normalize u and v (if you have some desperate compulsion to normalize) then you can use new basis vectors u_{unit}, v_{unit} but then q is $2x^2 + \frac{3}{2}y^2$, not $2x^2 + 3y^2$.

 method 3

 $q = 2(x^2 - 2xy) + 5y^2$

 $= 2(x^2 - 2xy + y^2) + 5y^2 - 2y^2$

 $= 2(x-y)^2 + 3y^2$

 $= 2x^2 + 3y^2$

 where $X = x-y$, $Y = y$.

 Then

 $\begin{bmatrix} X \\ Y \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$

 so

 $p^{-1} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}$, $p = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$

 The new basis vectors are $u = (1,0)$, $v = (1,1)$.

(c) The best system in which to graph is the orthonormal system from method 1. The equation is $6X^2 + Y^2 = 7$ and because it's an orthonormal system you know that the graph is an ellipse (not a circle).

 The major axis is the Y-axis, the line through the origin pointing like vector $(2,1)$. So the major axis is line $y = \frac{1}{2} x$ (see the diagram).

 The minor axis is the X-axis, the line through the origin pointing like vector $(1,-2)$. So the minor axis is the line $y = -2x$.

 The vertices of the ellipse are points C and D. In the new coord system, D has coords $X=0$, $Y=\sqrt{7}$.

 $p\begin{bmatrix} 0 \\ \sqrt{7} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{5} & 2/\sqrt{5} \\ -2/\sqrt{5} & 1/\sqrt{5} \end{bmatrix} \begin{bmatrix} 0 \\ \sqrt{7} \end{bmatrix} = \begin{bmatrix} 2\sqrt{7}/\sqrt{5} \\ \sqrt{7}/\sqrt{5} \end{bmatrix}$
So the old coords of D are \(x = \frac{2\sqrt{7}}{\sqrt{5}} , y = \frac{\sqrt{7}}{\sqrt{5}} \).

Similarly, C has new coords \(X = 0 , Y = -\sqrt{7} \) and old coords \(x = \frac{-2\sqrt{7}}{\sqrt{5}} , y = \frac{-\sqrt{7}}{\sqrt{5}} \).

Problem 1(c)

2. (a) method 1 The pm's are 2,3,4 so A is positive definite.

method 2 Use row/col ops

\[
\begin{align*}
\text{add } &\frac{1}{2} \text{ row 1 to row 2, add } \frac{1}{2} \text{ col 1 to col 2} \\
\text{add } &-\frac{1}{2} \text{ row 1 to row 3, add } -\frac{1}{2} \text{ col 1 to col 3} \\
\text{add } &\frac{1}{3} \text{ row 2 to row 3, add } \frac{1}{3} \text{ col 2 to col 3}
\end{align*}
\]

New matrix is \[
\begin{bmatrix}
2 & 0 & 0 \\
0 & \frac{3}{2} & 0 \\
0 & 0 & \frac{4}{3}
\end{bmatrix}
\]. Diagonal entries are positive so A is pos def.

(b) Continue from the row/col ops in part (a).

\[
\begin{align*}
\text{divide row 1 by } &\sqrt{2} , \text{ divide col 1 by } \sqrt{2} \\
\text{multiply row 2 by } &\sqrt{2}/3 , \text{ multiply col 2 by } \sqrt{2}/3 \\
\text{multiply row 3 by } &\sqrt{3}/4 , \text{ multiply col 3 by } \sqrt{3}/4
\end{align*}
\]

All the row/col ops put together turn A into I.

Do all the col ops to I to get \[
\begin{bmatrix}
\frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{(2\sqrt{3})} & -\frac{\sqrt{3}}{6} \\
0 & \frac{2}{3} & \frac{\sqrt{3}}{6} \\
0 & 0 & \frac{\sqrt{3}}{2}
\end{bmatrix}
\]

Then \(P^T A P = I \)

3. \(q = \vec{x}^T A \vec{x} \)

4. There is some (invertible) P so that A = \(P^T B P \). Then

\[
|AB| = |P^T B P| = |P^T| \cdot |B| \cdot |P| \cdot |B| \quad \text{(det rule)}
\]

\[
\geq 0 \quad \text{(the product of real squares is \(\geq 0 \))}
\]

(Didn't need the fact that P is invertible.)

5. \(M^T A M = B \) (The quadratic form that has matrix A w.r.t. the standard basis has matrix B w.r.t. the new basis composed of the cols of M.)

6. old = \[
\begin{bmatrix}
1 & 3/2 \\
3/2 & -1
\end{bmatrix}
\], new = \[
\begin{bmatrix}
-2 & 0 \\
0 & 3
\end{bmatrix}
\].

Let P have cols u and v. Then \(P^T \) old P = new.