SOLUTIONS Section 7.1

1. \(|z| = \sqrt{25 + 9} = \sqrt{34} \)

 \(\bar{z} = 5 + 3i \)

 \(zw = 2 - 42i \)

 \(\frac{1}{z} = \frac{1}{5-3i} \cdot \frac{5+3i}{5+3i} = \frac{5+3i}{34} = \frac{5}{34} + \frac{3}{34}i \)

 \(z^2 = 16 - 30i \)

2. \(z \) must be real.

3. \(z \) must be pure imag (e.g., \(3i, 6i, -2i \)).

4. \(A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, A^3 = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}, A^4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, A^5 = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix} = A \)

 The products repeat with period 4.

 By \(A^{243} \) you've gone through 60 cycles plus 3 rounds (because \(243 = 60 \cdot 4 + 3 \)) so you land back at \(A^3 \). So \(A^{243} = A^3 = \begin{bmatrix} 0 & -i \\ -i & 0 \end{bmatrix}, A^{244} = A^4, A^{245} = A \).

5. (a) \(\sqrt{53} \) (b) \(1 \) (c) \(3 \) (d) \(2 \) (e) \(7 \) (f) \(1 \) (g) \(\sqrt{41} \)

 (h) \(\sqrt{\cos^2 \theta + \sin^2 \theta} = 1 \)

6. (a) \(zw = (2-i)(-3+4i) = -2 + 11i \), \(\bar{zw} = -2 - 11i \)

 \(\bar{z} \bar{w} = (2+i)(-3-4i) = -2 - 11i \)

 (b) \(zw = -2 + 11i \), \(|zw| = \sqrt{125} = 5\sqrt{5} \)

 \(|z| \cdot |w| = \sqrt{5} \cdot \sqrt{25} = 5\sqrt{5} \)

7. You don't have to actually multiply \(\pi + \sqrt{2}i \) and \(\sqrt{17} + i \) together. By (5), the magnitude of the product is the product of the separate magnitudes. So

 \(\text{mag of the product} = \text{mag of } z \cdot \text{mag of } \sqrt{17} + i \)

 \(= \sqrt{\pi^2 + 2} \cdot \sqrt{18} \)
SOLUTIONS Section 7.2

1. \(A^* = \begin{bmatrix} 2 & 3+2i \\ i & 4-6i \end{bmatrix} \)

2. (a) 6-2i (b) 7 (c) 6i

3. \((A^*BC)^* = C^*B^*A^{**} = C^*B^*A\)

4. \(A^* = \begin{bmatrix} a & d & \bar{g} \\ \bar{b} & \bar{e} & \bar{h} \\ -c & f & \bar{k} \end{bmatrix} \). To find \(|A^*|\) I'll expand down col 1.

\[|A^*| = \begin{vmatrix} a & d & \bar{g} \\ \bar{b} & \bar{e} & \bar{h} \\ -c & f & \bar{k} \end{vmatrix} = a(\bar{e}k - \bar{f}h) - b(dk - fg) + c(dh - eg) \]

by conjugate rules

The expression under the conjugate sign on the righthand side happens to be \(|A|\) expanded across row 1. So

\[|A^*| = \text{det of } A \quad \text{QED} \]

5. (a) True. The diagonal entries are still real and matching entries \(a+bi\) and \(-a-bi\) are now \(-a-bi\) and \(-a+bi\) which are still conjugates.

(b) True. \(H^*\) is \(H\) so of course it's Herm.

6. method 1 (good for 3 \(\times \) 3's only)

Let

\(A = \begin{bmatrix} a1 + a2i & a2 + b2i & a3 + b3i \\ a4 + b4i & a5 + b5i & a6 + b6i \\ a7 + b7i & a8 + b8i & a9 + b9i \end{bmatrix} \)

where \(a1, ..., a9, b1, ..., b9\) are all real.

Then

\(A + A^* = \begin{bmatrix} 2a1 & a2+a4 + (b2-b4)i & \text{etc} \\ a2+a4 - (b2-b4)i & 2a5 & \text{etc} \\ \text{etc} & \text{etc} & 2a9 \end{bmatrix} \)

You can see that \(A+A^*\) is Herm.

method 2 (good for \(n \times n\)'s in general)

I'll show that \((A + A^*)^* = A + A^*\).

\[(A + A^*)^* = A^* + A^{**} \quad * \text{ rule}\]
\[= A^* + A \quad * \text{ rule}\]
\[= A + A^* \]

7. Want to show that \((A^*HA)^* = A^*HA\).

\((A^*HA)^* = A^{**}H^*A^{**} = A^*H^*A = A^*HA \quad \text{by * rules and the hypothesis that H is Herm})

8. Want to show that \((H^{-1})^* = H^{-1}\).

\[(H^{-1})^* = (H^*)^{-1} \quad * \text{ rule}\]
\[= H^{-1} \quad H \text{ is Herm so } H^* = H \]

method 2 (good for \(3 \times 3\)'s) Take the typical complex matrix \(A\) from method 1 of #6 and compute \(A - A^*\) to see that it is skew Herm.

10. \(K^2)^* = (KK)^* = K^*K^* = (-K)(-K) = K^2\) so \(K^2\) is Herm.

\((K^3)^* = (KKK)^* = K^*K^*K^* = (-K)(-K)(-K) = -K^3\) so \(K^3\) is skew Herm.
1. No since \(u \cdot v = (-i)(-1) + (1)(i) = 2i, \) not 0 (remember to conjugate the components of the first vector before you multiply and add).

2. \(u = (1+2i, 3i, 4) \)

 \(u \cdot v = (2+i)(3-i) - 3i+4i(1-2i) = 15 + 2i \)

 Warning
 Don't write \(u \cdot v = \bar{u} \cdot \bar{v} \)

 \(v \cdot u = \bar{u} \cdot \bar{v} = 15 - 2i \)

 \[\|u\| = \sqrt{4 + 1 + 9 + 16} = \sqrt{30} \]

 \[\|v\| = \sqrt{9 + 1 + 1 + 1 + 4} = 4 \]

 \[|u \cdot v| \) (meaning the mag of the complex number \(u \cdot v \)) = \sqrt{225 + 4} = \sqrt{229} \]

 \(v_{\text{unit}} = \left(\frac{3-i}{4}, -\frac{i}{4}, \frac{1-2i}{4} \right) \)

3. (a) \(\sqrt{1 + 1} = \sqrt{2} \)
 (b) \(\sqrt{4 + 9 + 1} = \sqrt{14} \)
 (c) \(\sqrt{9 + 1 + 4 + 16} = \sqrt{30} \)

4. (a) \((u+v) \cdot (u-v) = u \cdot u - v \cdot v + v \cdot u - u \cdot v \)

 \[= \|u\|^2 - \|v\|^2 + v \cdot u - u \cdot v \]

 \[= 9 - 49 + 6 + 2i - (6-2i) \]

 \[= -40 + 4i \]

 (b) \(\|u + iv\|^2 = (u + iv) \cdot (u + iv) \)

 \[= u \cdot u + iv \cdot u + u \cdot iv + iv \cdot iv \]

 \[= u \cdot u + i(v \cdot u) + i(v \cdot u) + i \cdot i(v \cdot v) \]

 \[= \|u\|^2 - i(v \cdot u) + i(u \cdot v) + \|v\|^2 \]

 \[= 9 - i(6 + 2i) + i(6 - 2i) + 49 \]

 \[= 62 \]

 \[\|u + iv\| = \sqrt{62} \]

 (c) \((2-3i)u \cdot iu + v \cdot iu = 2-3i \)

 \[= (2+3i)i\|u\|^2 + i(6 + 2i) = -29 + 24i \]

 (d) \(\|6iu\| = |6i|\|u\| \) (where \(|6i| \) means the mag of the number \(6i \))

 \[= 6 \times 3 = 18 \]

 (e) \(\|(2-3i)u\| = |2-3i|\|u\| = 3 \sqrt{13} \)

5. (a) True
 (b) False. It multiplies the norm by the mag of \(3i \) which is 3.

6. (a) True because the diagonals of a rhombus are perp.
 (b) If \(\|u\| = \|v\| \) then \((u+v) \cdot (u-v) = u \cdot u - v \cdot v \)

 \[= \|u\|^2 - \|v\|^2 \]

 \[= 0 \]

 so \(u+v \) and \(u-v \) are orthog.

 (c) The step \((u+v) \cdot (u-v) = u \cdot u - v \cdot v \) breaks down in \(\mathbb{C}^n \). What you have instead is \((u+v) \cdot (u-v) = u \cdot u + v \cdot u - u \cdot v + v \cdot v \).

 In \(\mathbb{R}^n \), \(u \cdot v \) and \(v \cdot u \) are equal so those terms cancel out. But they aren't necessarily equal in \(\mathbb{C}^n \).

 For a counterexample, choose \(u \) and \(v \) so that \(u \cdot v \) is non-real so that it doesn't equal \(v \cdot u \). For instance let \(u = (i,0) \) and \(v = (1,0) \). Then \(\|u\| = \|v\| \) (both are 1) but \((u+v) \cdot (u-v) = (1+i, 0) \cdot (-1+i, 0) = (1-i)(-1+i) = 2i, \) not 0.
7. \[\|x + iy\|^2 = (x + iy) \cdot (x + iy) \]
 \[= x \cdot x + (iy) \cdot (iy) + (iy) \cdot x + x \cdot (iy) \]
 \[= x \cdot x + (-i)(i)(y \cdot y) + (-i)(y \cdot x) + i(x \cdot y) \]
 \[= \|x\|^2 + \|y\|^2 + i(x \cdot y - y \cdot x) \]

8. Let \(x \cdot y = a + bi \). Then \(y \cdot x = a - bi \) and

 \[\frac{1}{2} i(y \cdot x) - \frac{1}{2} i(x \cdot y) = \frac{1}{2} i(a-bi) - \frac{1}{2} i(a+bi) = b \text{ which is the imag part of } x \cdot y \]

9. (a) Let \(x = au + bv \). Then

 \((2+3i, 6-7i) = a(i,0) + b(0,i) \)

 \[2+3i = ia, a = \frac{2+3i}{i} = -2i+3 \text{ (note that } 1/i = -i) \]

 \[6-7i = ib, b = \frac{6-7i}{i} = -6i -7 \]

 (b) \(P = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}, \quad P^{-1} = \begin{bmatrix} -i & 0 \\ 0 & -i \end{bmatrix}, \quad P^{-1} \begin{bmatrix} 2+3i \\ 6-7i \end{bmatrix} = \begin{bmatrix} 3-2i \\ -7-6i \end{bmatrix} \)

 so the new coords of \(x \) are \(3-2i \) and \(-7-6i \)

(c) \(u \) and \(v \) are orthog and unit vectors so

 \(x = (u \cdot x)u + (v \cdot x)v = (3-2i)u + (-7-6i)v \)

 \textbf{warning} It’s OK to use the formula \(x = \frac{u \cdot x}{u \cdot u} u + \frac{v \cdot x}{v \cdot v} v \) but make sure you get \(u \cdot u = 1 \). It is \textit{wrong} to say \(u \cdot u = i^2 = -1 \).

10. It computes \(v \cdot u \) or equivalently, \(-u \cdot v \).
SOLUTIONS Section 7.4

1. Let U_1 and U_2 be unitary. Want to show that $(U_1 U_2) (U_1 U_2)^* = I$.

 $(U_1 U_2) (U_1 U_2)^* = U_1 U_2 U_2^* U_1^*$ \hspace{1cm} * rule

 $= U_1^* U_1 U_2 U_2^*$ \hspace{1cm} since U_2 is unitary

 $= I$ \hspace{1cm} since U_1 is unitary

2. The cols of U are orthonormal. So the rows of U^T are orthonormal so U^T is also unitary.

3. (a) Not unitary since $||M|| = 2$ not 1.

 (b) $||M|| = 1$ which is inconclusive.

 (c) Not unitary since $||M|| = \sqrt{5}$ not 1.

 (d) $||M|| = 1$, inconclusive.

 (e) $||M|| = 1$, inconclusive.

4. Not unitary since the cols are no longer unit vectors (they have norm 3 now).

5. $(U^{-1})^* = (U^{-1})^{-1}$ \hspace{1cm} * rule

 $= U^{-1} (U^{-1})^{-1}$ \hspace{1cm} since U is unitary

 $= U^{-1} U$

 $= I$

6. If $U_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ and $U_2 = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ then $U_1 + U_2 = \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix}$.

 U_1 and U_2 are unitary but $U_1 + U_2$ is not.
SOLUTIONS review problems for Chapter 7

1. \(u \cdot v = (-2i)(3+4i) + (-6)(5+6i) = -22 - 42i \)
 \(v \cdot u = u \cdot v = -22 + 42i \)
 \(\|u\| = \sqrt{4 + 36} = \sqrt{40} \)
 \(\|v\| = \sqrt{9 + 16 + 25 + 36} = \sqrt{86} \)

2. Let the scalar \(w \cdot v \) be called \(k \) temporarily. Then
 \[
 (v - kw) \cdot w = v \cdot w - (kw) \cdot w = v \cdot w - \frac{k}{k} (w \cdot w)
 \]
 \[
 = v \cdot w - 9k
 \]
 \[
 = v \cdot w - 9 (w \cdot v)
 \]
 plug the \(k \) back in
 \[
 = v \cdot w - 9 (v \cdot w)
 \]
 \[=-8(v \cdot w)\]

3. \(H = H^* \) so \(|H| = |H^*| = |H| \).
 So \(|H| \) equals its conjugate. So \(|H| \) is real.

4. Want to show that \((U^{-1}HU)^* = U^{-1}HU \).
 \((U^{-1}HU)^* = U^* H^* (U^{-1})^* \) \(* \) rule
 \(= U^{-1} H (U^*)^* \) since \(U \) is unitary and \(H \) is Herm
 \(= U^{-1}HU \)

5. Let
 \[
 A = \begin{bmatrix} 5 & 2 \\ 2 & 3 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 4 \\ 4 & 7 \end{bmatrix}
 \]
 Then \(A \) and \(B \) are Herm but \(AB = \begin{bmatrix} 14 & 34 \\ 14 & 34 \end{bmatrix} \) is not Herm.

6. (a) \textit{method 1} Each col has norm 1. And the dot product of any col with any other col is 0. So the cols are orthonormal which makes \(A \) unitary.

 \[\text{method 2} \]
 Do the same thing as method 1 but with rows.

 \[\text{method 3} \]
 \[
 A^*A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & -i & 0 \\ 0 & -i & 0 & 0 \\ 0 & 0 & 0 & i \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & i & 0 \\ 0 & i & 0 & 0 \\ 0 & 0 & 0 & -i \end{bmatrix} = I
 \]
 So \(A \) is unitary.

 (b) \(A^{-1} \) is \(A^* \), which I found above.

7. (a) Not possible. First col isn't a unit vector.
 (b) Let \(x = -3i \), \(y \) any real number
 (c) Let \(x = 3i \), \(y \) any pure imaginary.
8. \(\|u\| = \sqrt{1 + 1 + 4 + 9 + 4} \) so \(u_{\text{unit}} = \left(\frac{i}{\sqrt{19}}, \frac{i}{\sqrt{19}}, \frac{2}{\sqrt{19}}, \frac{2+3i}{\sqrt{19}} \right) \).

9. The diagonal entries are real by property (5) of dot products.
 The matching entries like \(u \cdot w \) and \(w \cdot u \) are conjugates by property (1) of dot products.
 So \(A \) is Hermitian.