
A QUICK INTRODUCTION TO BASIC SET THEORY

ANUSH TSERUNYAN

This note is intended to quickly introduce basic notions in set theory to (undergraduate)
students in mathematics not necessarily specializing in logic, thus requiring no background.
It uses the sections on well-orderings, ordinals and cardinal arithmetic of [Kun83], as well as
some parts from [Mos06].
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1. Zermelo–Fraenkel set theory

The language of ZFC. ZF stands for Zermelo–Fraenkel set theory and ZFC stands for
Zermelo–Fraenkel set theory with Choice (the latter being an extra axiom added to ZF).

To describe the axioms of ZFC we need to fix a language (formally speaking, a first order
logic language). The language of ZF (same for ZFC) has only one special symbol, namely the
binary relation symbol ∈, in addition to the standard symbols that every other first order
language has:

the symbols =,¬,∧,∨,→,∀,∃,(,) and variables x0,x1,x2, ....
To keep things informal and easy to read, we also use other letters such as x,y,z or even A,
B, C, F for variables, as well as extra symbols like ,,<,↔, etc.

Using these symbols and variables we form statements about sets such as ∀x(x = x),
∃x(x , x), ∃x(x ∈ y ∧ y < z). The variables are interpreted as sets and the symbols are
interpreted the expected way: = as “equality”, ∈ as “belongs to” (set membership), ¬ as
“negation”, ∧ as “conjunction” (and), ∨ as “disjunction” (or), → as “implication”, ∀ as “for
all”, and ∃ as “there exists”. For example, ∀x((x ∈ y ∧ y ∈ z)→ (x ∈ z)) is interpreted as
“for all sets x, if the set x is a member of the set y and the set y is a member of the set z,
then the set x is a member of the set z”. In mathematical logic, we refer to these kinds of
statements as formulas (in the language of ZF). Here is their formal definition, although a
nonpedantic reader can safely skip it.

Definition 1.1. Recursively define the notion of a formula in the language of ZF as follows:
(i) For variables x,y, x= y is a formula;
(ii) For variables x,y, x ∈ y is a formula;
(iii) If ϕ is a formula, then so is ¬(ϕ);
(iv) If ϕ and ψ are formulas, then so are (ϕ)∧ (ψ), (ϕ)∨ (ψ) and (ϕ)→ (ψ);
(v) If ϕ is a formula and x a variable, then ∀x(ϕ) and ∃x(ϕ) are formulas.

When writing a formula, one doesn’t have to religiously follow the rules about parentheses
described in the definition above as long as there is no ambiguity in reading the formula;
for example, ¬x= y is technically not a formula, but it’s ok to write it this way since there
is no ambiguity: it is clearly the same as ¬(x= y). Also, when we want to emphasize that
a formula ϕ says something about a set (variable) x, we write ϕ(x), although ϕ may also
contain other variables; for example, ϕ(x) may be x ∈ y. Lastly, we use abbreviations

∀x ∈Xϕ(x) ..⇐⇒ ∀x
(
x ∈X → ϕ(x)

)
∃x ∈Xϕ(x) ..⇐⇒ ∃x

(
x ∈X ∧ϕ(x)

)
.

Axioms of ZFC. We now list all of the axioms of ZFC for reference, although we discuss only
some of them here and leave the detailed discussion of the rest for later. Axioms 0–7 form
the system ZF and ZFC is just ZF together with Axiom 9 (Choice).

Axiom 0. Set existence:
∃x(x= x).

Since x= x vacuously holds, this axiom just says that there is a set (one has to start with
something).
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Axiom 1. Extensionality:

∀x∀y (
∀z (z ∈ x↔ z ∈ y)
→
x= y

).

This says that if two sets have the same members then they are equal; in other words, sets
are uniquely determined by the members they contain.

Axiom 2. Pairing:

∀u∀v∃p∀w (
w ∈ p
↔
(w = u∨w = v)
).

This says that for any sets u,v, there is a set p that contains both u,v as its members and
no other members. We denote this set p by {u,v} and call it the (unordered) pairing of u,v.

Axiom 3. Union:

∀C ∃U ∀x(
x ∈ U
↔
∃S ∈ C(x ∈ S)
).

This says that for each set C (think of C as a collection of sets), there is a set U whose
members are exactly the elements that belong to some set S in this collection C. We denote
this set U by ⋃C and call it the union of the sets in C.

Axiom 4. Powerset:

∀X ∃P ∀Y (
Y ∈ P
↔
Y ⊆X
),

where Y ⊆X is an abbreviation for ∀z(z ∈ Y → z ∈X). This says that for any set X there
is a set P (think of it as a collection of sets) whose elements are exactly the subsets of X.
We denote this set P by P(X) and call it the powerset of X.

Axiom schema 5. Comprehension: for every formula ϕ, the following is an axiom:
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∀X ∃Y ∀z (
z ∈ y
↔
(z ∈X ∧ϕ(z))
).

This says that for each set X there is a set Y whose element are exactly those elements of
X that satisfy ϕ. We denote this set Y by {z ∈X : ϕ(z)} and call it the subset of X defined
by ϕ.

Note that this is not one axiom! This is an infinite collection of axioms, one for each ϕ.
Furthermore, note that ϕ(z) may also contain variables other than z,X,Y and we think of
them as parameters.

Axiom 6. Infinity:

∃X (
∅ ∈X
∧
∀x ∈X (S(x) ∈X)
),

where ∅ and S(x) are defined as follows. It can be deduced from the above axioms that there
is a set with no elements, which we denote by ∅ and call the emptyset. Furthermore, it can
be deduced that for every set x, there is a set y whose members are exactly the elements of x
and x itself, i.e., y ..= x∪{x}. We denote this set y by S(x) and call it the successor of x.

Call a set X inductive if ∅ ∈X and for each x ∈X, its successor S(x) is also an element of
X. Infinity axiom states that there exists an inductive set.

Axiom 7. Foundation:

∀X (
X , ∅
→
∃y ∈X¬∃z ∈X (z ∈ y)
),

where we again use some easy-to-unravel abbreviations.
We call an element y ∈X an ∈-minimal (or membership-minimal) element of X if there is

no element z ∈X such that z ∈ y (in particular, y < y). Foundation axiom states that the
binary relation ∈ is well-founded, i.e., every set X has an ∈-minimal element. It is rarely
used in set theory and not at all in other areas of mathematics. Thus, as an exercise, we try
to circumvent its uses below in the text and the reader is urged to do so as well.

Axiom schema 8. Replacement: for every formula ϕ, the following is an axiom:
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∀X [
∀x ∈X ∃!yϕ(x,y)
→
∃Y ∀x ∈X ∃y ∈ Y ϕ(x,y)
],

where ∃!y abbreviates “there exists a unique y”.
We say that a formula ϕ(x,y) defines a function on a set X if for each x ∈ X, there is

exactly one set y such that ϕ(x,y) holds. In this case, we say that a set Y contains the
ϕ-image of X if for all x ∈X, all y with ϕ(x,y) are elements of Y .

Replacement axiom for ϕ says that for every set X, if ϕ(x,y) defines a function on X, then
there is a set Y containing the ϕ-image of X.

Axiom 9. Choice:

∀C [
∅ < C
→
∃f : C→

⋃
C ∀S ∈ C (f(S) ∈ S)

],

where for sets X,Y , the notation f :X → Y means that f is a function from X to Y . The
notion of a function, as well as that of an ordered pair (x,y) and Cartesian product X ×Y ,
can be defined using the axioms above, and we leave it as an exercise (see Exercise 1).

Choice axiom (more commonly referred to as Axiom of Choice, abbreviated, AC) states
that for any set C with ∅ < C (think of C as a collection of nonempty sets), there is a function
f that assigns to each set S ∈ C an element of S.

Notation 1.2. For a set X and sets x0,x1, . . . ,xn, we write X = {x0,x1, . . .xn} to mean that
for all sets x,

x ∈X ↔
(
(x= x0)∨ (x= x1)∨ ·· · ∨ (x= xn)

)
.

Furthermore, for a formula ϕ, we write X = {x : ϕ(x)} to mean that for all sets x,

x ∈X ↔ ϕ(x).

Caution 1.3. For a given formula ϕ, we don’t know a priori if there exists a set X such
that X = {x : ϕ(x)}. In fact, it doesn’t exist for some ϕ (see the discussion of Russel’s
paradox in Section 11). It is tempting to say that the existence of such a set X follows
from Comprehension axiom, but the latter only gives the existence of sets of the form
{x ∈ Y : ϕ(x)} and not {x : ϕ(x)}. To apply Comprehension, one has to first find (prove
existence of) an appropriate set Y .

Below we abandon using the awkward formal (symbolic) language of ZFC and start writing
our definitions and theorems in ordinary (mathematical) English, with the understanding
that if we had to, we could translate everything to the formal language.
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2. Well-orderings

Definition 2.1. A binary relation < on a set A is called an ordering (or a strict ordering) if
for all x,y,z ∈ A,
(i) (Irreflexivity) x ≮ x,
(ii) (Transitivity) x < y < z⇒ x < z.
We will refer to the pair (A,<) as an ordering or an ordered set if < is an ordering of A.
Observation 2.2. Conditions (i) and (ii) imply that orderings are asymmetric, i.e.

x < y⇒ y ≮ x.

Remark 2.3. The term ordering is also often used for a binary relation 6 on a set A that
is reflexive, anti-symmetric, and transitive. This is why, the notion in Definition 2.1 is
often referred to as a strict ordering. The two different notions are easily obtained from
one another: indeed, given a nonstrict ordering 6, one obtains its strict version by defining
a < b ..⇔ a 6 b and a , b; conversely, given a strict ordering, its nonstrict version is defined by
a 6 b ..⇔ a < b or a= b. In this note, we will only use strict orderings and hence we simply
call it ordering throughout.

For an ordering <, we write x 6 y to mean “x < y or x= y”.
Definition 2.4. An ordering < on a set A is called linear (or total) if in addition we have:
(iii) (Totality) For all x,y ∈ A, either x= y or x < y or y < x.
A linear ordering < is called a well-ordering if
(iv) (Well-foundedness) every subset of A has a least element x, i.e. for all y ∈ A, x 6 y.

Note that such x is necessarily unique.
Definition 2.5. Let (A,<) be an ordering. For a ∈ A, let pred(a,A,<) denote the set of
predecessors of a, i.e.

pred(a,A,<) ..= {b ∈ A : b < a} .
We simply write pred(a), when (A,<) is clear from the context. A subset B ⊆ A is called an
initial segment if it is closed downward, i.e. for all x ∈B, pred(x,A,<)⊆B. Call B a proper
initial segment if B , A.
Lemma 2.6. If (A,<) is a well-ordering, then any proper initial segment B is equal to pred(a)
for some a ∈ A; in other words, B has a supremum.
Proof. Take a to be the least element of A \B. �

Definition 2.7. For ordered sets (A,<A),(B,<B), call a function f : A→B an isomorphism of
(A,<A) with (B,<B) (or just an order-isomorphism) if it is a bijection and for all a0,a1 ∈ A,

a0 <A a1 ⇐⇒ f(a0)<B f(a1).
Say that (A,<A) and (B,<B) are isomorphic, and denote (A,<A)' (B,<B), if there is an
isomorphism of (A,<A) with (B,<B).
Notation. If (A,<) is a well-ordering and B ⊆ A, then (B,<|B) is also a well-ordering, where
<|B ..=<∩B×B. We will abuse the notation and write (B,<) below.

For well-orderings (A,<A) and (B,<B), write (A,<A)≺ (B,<B) if
(A,<A)' (pred(b),<B),

for some b ∈B. Write (A,<A)� (B,<B) if (A,<A)≺ (B,<B) or (A,<A)' (B,<B).
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Observation 2.8. (A,<A) � (B,<B) is equivalent to the existence of an isomorphism of
(A,<A) with an initial segment of (B,<B).
Lemma 2.9. For well-orderings (A,<A),(B,<B), there is at most one isomorphism of (A,<A)
with an initial segment of (B,<B).
Proof. LetB′,B′′ be initial segments ofB (possibly equal) and suppose towards a contradiction
that there are order-isomorphisms f : A→ B′,g : A→ B′′ such that f , g. Let a be the
<A-least element in A for which f(a) , g(a). Without loss of generality, assume f(a)<B g(a).
Then f(a) ∈ B′′, so we can apply g−1 to the last inequality and get a′ ..= g−1(f(a)) <A a.
Hence, by the choice of a, f(a′) = g(a′) = f(a), contradicting the injectivity of f . �

Corollary 2.10. (A,<) ⊀ (A,<) for any well-ordering (A,<).
Proof. The identity map a 7→ a is already an isomorphism of (A,<A) with its initial segment,
so there cannot be any other, by Lemma 2.9. �

Observation 2.11. For any well-orderings (A,<A),(B,<B),(C,<C),
(a) (A,<A)≺ (B,<B)� (C,<C) =⇒ (A,<A)≺ (C,<C);
(b) (A,<A)� (B,<B)≺ (C,<C) =⇒ (A,<A)≺ (C,<C).
Remark 2.12. Recall that functions are simply sets of pairs satisfying a certain condition.
More precisely, a function f : A→B is a subset of A×B satisfying the following: for every
a ∈ A there is exactly one b ∈B such that (a,b) ∈ f . (We commonly write f(a) = b instead
of awkward (a,b) ∈ f .) Thus, for example, the notation f ⊆ g makes sense for functions f,g.
Theorem 2.13. For well-orderings (A,<A) and (B,<B), exactly one of the following holds:
(i) (A,<A)' (B,<B);
(ii) (A,<A)≺ (B,<B);
(iii) (B,<B)≺ (A,<A).
Proof. That these statements are mutually exclusive follows from Lemma 2.9 via Observa-
tion 2.11. To show that one of them holds, let

f ..= {(a,b) ∈ A×B : (pred(a),<A)' (pred(b),<B)} .
It is straightforward to check that f is a function from some initial segment A′ of A to
an initial segment B′ of B. In fact, f is an isomorphism of (A′,<A) with (B′,<B), so it
is enough to show that A′ = A or B′ = B. But A′ and B′ cannot both be proper since
otherwise A′ = pred(a) and B′ = pred(b) for some a ∈ A \A′, b ∈B \B′, whence (a,b) ∈ f by
the definition of f , so a ∈ A′, a contradiction. �

3. Ordinals

Simply put, ordinals are a generalization of natural numbers, suitable for listing (counting)
infinite sets. They are certain well-ordered sets that serve as canonical representatives of
isomorphism classes of well-ordered sets, meaning that every well-ordered set is isomorphic to
exactly one ordinal (see Theorem 3.12). Besides, ordinals are very convenient to work with:
for example, the relation ≺ between ordinals coincides with ∈.

In ordinary mathematics, it is customary to denote sets by capital letters A,B, ... and
elements by small letters a,b, .... In set theory however, sets themselves are often elements of
other sets under consideration, so one has to abandon this tradition, as we do below.
Definition 3.1. A set x is called transitive if all of its elements are also its subsets, i.e. for all
y ∈ x, y ⊆ x.
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For example, the sets ∅, {∅} , {∅,{∅}} , {∅,{∅} ,{{∅}}} are transitive (check!), but the set
{{∅}} isn’t (why?).

Definition 3.2. A set α is called an ordinal if it is transitive and well-ordered by ∈.

The transitive sets ∅, {∅} , {∅,{∅}} mentioned above are all ordinals; however, the set
{∅,{∅} ,{{∅}}} isn’t an ordinal since ∈ is not an ordering on it1. We usually denote ordinals
by Greek letters α,β,γ, etc.

Lemma 3.3. Let α be an ordinal.
(a) α < α.
(b) For any y ∈ α, y = pred(y,α,∈).
(c) The least element of α is ∅ and we denote 0 ..= ∅.
(d) Every y ∈ α is itself an ordinal.

Proof. For part (a), recall that since ∈ is an ordering on α, it must be irreflexive. Thus, for
all y ∈ α, y < y. Hence, if α ∈ α, taking y = α would give a contradiction. Part (b) follows
from the transitivity of α and Axiom 1 (Extensionality). Part (c) follows directly from (b)
since if y is the least element of α, then pred(y,α,∈) = ∅. Part (d) is left as an exercise. �

For ordinals α, we will write α instead of (α,∈) even when we mean to view α as a
well-ordered set.

Lemma 3.4. Let α,β be ordinals.
(a) If α' β, then α = β.
(b) ∈ is a total order on ordinals, i.e. exactly one of the following holds: either α = β, or

α ∈ β, or β ∈ α.
(c) If α ( β, then α ∈ β.

Proof. Part (a) is left as an exercise. For part (b), apply Theorem 2.13 and use (b) of
Lemma 3.3 and (a) of the current lemma. Finally, (c) follows from (b) since α ( β and β ∈ α
cannot both hold: otherwise, α ( β ⊆ α and hence α ( α, a contradiction. �

In light of the above lemma, we often write α < β instead of α ∈ β, for ordinals α,β. We
also use the notation α 6 β to mean α = β or α < β.

Lemma 3.5.
(a) Every nonempty set of ordinals C has an ∈-least element, i.e. there is α ∈ C such that

for all β ∈ C not equal to α, we have α ∈ β. We denote this α by minC.
(b) For every mathematical statement (formula) ϕ(x), if there is an ordinal α for which

ϕ(α) holds, then there is a least such ordinal.
(c) Every transitive set of ordinals is itself an ordinal.

Proof. For (a), fix an ordinal γ ∈ C. If γ ∩C = ∅ then γ is the ∈-least element in C and
we are done. Otherwise, since γ ∩C is a subset of γ and γ is well-ordered by ∈, there is an
∈-least element α in γ ∩C. Clearly, α would also be the ∈-least element in C.

The proof of (b) is identical to that of (a); in fact, the latter follows from the former by
letting ϕ(x) be x ∈ C.

Part (c) follows from (b) of Lemma 3.4 and (a) of the current lemma. �

1The author thanks Minh Tran for this quick example.
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Remark 3.6. Part (b) above allows us to freely use definitions like “Let κ be the least ordinal
such that ϕ(κ)”, without having to spot a set (the set C in part (a)) that would contain this
κ as we would have to do if we used (a) instead.

We now define a successor operation for ordinals.
Definition 3.7. For a set x, we define the successor S(x) of x to be the set x∪{x}.

Note that x ∈ S(x) and x⊆ S(x).
Lemma 3.8. For an ordinal α, S(α) is the least ordinal greater than α.
Proof. First note that S(α) is a transitive set of ordinals and thus is an ordinal by (c) of
Lemma 3.5. By definition, α < S(α). Now, assuming β > α, we show that S(α) 6 β. Indeed,
by the transitivity of β, we have α ⊆ β and thus S(α) ⊆ β. Therefore, either S(α) = β or
S(α)< β by (c) of Lemma 3.4. �

Definition 3.9. An ordinal α , 0 is called a successor if there is an ordinal β such that
α = S(β); otherwise, we would say that α is a limit ordinal.

Thus, there are three types of ordinals: 0, successor ordinals, and limit ordinals.
Definition 3.10. For a set of ordinals C, define supC = ⋃

C ..= ⋃
α∈C α.

Lemma 3.11. Let C be a set of ordinals.
(a) supC is the least ordinal β such that for all α ∈ C, α 6 β.
(b) If C is transitive (and hence an ordinal), then supC < C if and only if C is a limit

ordinal or ∅.
(c) minC = ⋂

C ..= ⋂
α∈C α.

Proof. Left as an exercise. �

Theorem 3.12. Any well-ordering (A,<A) is isomorphic to exactly one ordinal.
Proof. Uniqueness follows from (a) of Lemma 3.4. For existence, let

A′ = {a ∈ A : there is an ordinal α such that pred(a,A,<A)' α} .
By uniqueness, the ordinal α in the definition of A′ is unique for each a ∈ A. Thus, by
Axiom 8 (Replacement), there is a set C and a function f : A′→ C such that for all a ∈ A′,
f(a) is an ordinal and pred(a,A,<A) ' f(a). By shrinking C, we may assume that f is
surjective. Note that A′ is an initial segment of A and hence C is transitive. Thus, by (c)
of Lemma 3.5, C is an ordinal. It is also easy to see that f is an isomorphism between
(A′,<A) and C. Now if A′ , A, then A′ = pred(a,A,<A) for some a ∈ A \A′. But then
pred(a,A,<A)' C and hence a ∈ A′, a contradiction. Thus, A′ = A and we are done. �

Definition 3.13. For a well-ordering (A,<A) the unique ordinal α with (A,<A)' α is called
the order type of (A,<A) and denoted by tp(A,<A).

4. Transfinite induction

The usual proof of the induction theorem for N given in an undergraduate course uses
the fact that the usual ordering on N is a well-ordering. The same proof works for any
well-ordered set:
Theorem 4.1 (Transfinite induction). Let (A,<) be a well-ordered set and let P ⊆ A be a set
such that for any a ∈ A, pred(a,A,<)⊆ P implies a ∈ P . Then P = A.
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Proof. Assume for contradiction that P , A and let a be the least element of A \P . By our
choice, pred(a,A,<)⊆ P , and hence a ∈ P , a contradiction. �

Remark 4.2. In the proofs using transfinite induction on ordinals, the cases of 0, successor
ordinals and limit ordinals are usually considered separately. An example is the proof of
Theorem 4.4 below.

It is common in mathematics to define sequences (indexed by N) inductively.2 Such an
example is the Fibonacci sequence. In set theory however, we often want to inductively
define sequences that are indexed by a larger well-ordered set (typically an ordinal). The
next theorem shows that this indeed can be done. For notational simplicity, we state it for
ordinals, but the same proof would work for arbitrary well-ordered sets.

First, note (realize?) that a sequence indexed by an ordinal κ, is nothing but a function
defined on κ. The idea of inductive definition of such function is that in order to define its
value at a point α ∈ κ, we use its values at the predecessors of α. To make this precise, we
need the following:

Definition 4.3. For sets A,B, a partial function from A to B is a usual function from a subset
of A to B. We denote this by f : A⇀ B, and we denote the domain of f by dom(f). We
denote the set of partial functions from A to B by Partial(A,B).

Theorem 4.4 (Transfinite recursion). For every ordinal κ, set A, and map3 F : Partial(κ,A)×
κ→ A, there is a unique function f : κ→ A such that for every α ∈ κ,

f(α) = F (f |α,α).

Proof. We prove by transfinite induction on S(κ) that for all γ 6 κ, there is a unique function
fγ : γ→ A satisfying

fγ(α) = F (fγ |α,α), (∗)
for every α < γ. Granted this, we would take f = fκ and be done.

For γ = 0, put fγ = ∅ and note that this is the only function defined on ∅ in general. For γ
a limit ordinal, it follows from uniqueness that for all α < β < γ, fα ⊆ fβ (see Remark 2.12).
Thus fγ = ⋃

β<γ fβ is a function from γ to A and it clearly satisfies (∗) as so do the functions
fβ, β < γ. The uniqueness of fγ also follows from the uniqueness of fβ for each β < γ.

For the successor case, let γ = S(β). For α ∈ γ, put

fγ(α) =
{
F (fβ,β) if α = β
fβ(α) otherwise .

It is clear that fγ satisfies (∗) and that it is the unique such function. �

Remark 4.5. The proof of Theorem 4.4 shows that its conclusion holds even if the map F
is only defined at points (f,α) ∈ Partial(κ,A)× κ with α = dom(f), which is what usually
happens in practice.

5. The set of natural numbers

Having defined 0 and the successor operation, we can attempt to define natural numbers
as follows:

0 ..= ∅,1 ..= S(0),2 ..= S(1), ...,n+ 1 ..= S(n), ...
2The correct word here is “recursively”.
3One can relax the hypothesis by replacing sets with classes, see Section 11.
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But wait, I just used induction on the set of natural numbers while trying to define natural
numbers!!! Not good.

It is still ok to define 1 ..= S(∅), 2 ..= S(S(∅)), even 7 ..= S(S(S(S(S(S(S(∅))))))), but doing
so, we won’t be able to define all of the natural numbers at once. We can try a top-to-bottom
approach instead; that is, isolate which ordinals we would like to be called natural numbers.

Definition 5.1. An ordinal α is called a natural number, if all β 6 α are successor ordinals or
0.

Now we want to define the set of natural numbers. It is tempting to say “Put N ..=
{α : α is a natural number}”, but the problem is that this may not be a set! In other words,
this type of definitions is not allowed in general as it may lead to contradictions (see section
Classes below). What is allowed is postulated by Axiom 5 (Comprehension) and in order to
use this axiom schema, we need to know a priori that there exists a set y that contains all of
the natural numbers. Using ∅ and set-theoretic operations like pairing, union, powerset, etc.,
we won’t be able to construct such a set. This is why the existence of such a set is outright
postulated in ZF and is called Axiom of Infinity (Axiom 6). It says the following:

There is a set y such that ∅ ∈ y and for every x ∈ y, S(x) ∈ y.

Definition 5.2. Call a set y inductive, if it satisfies ∅ ∈ y and for every x ∈ y, S(x) ∈ y.

Lemma 5.3. Every inductive y contains all of the natural numbers.

Proof. Assume for contradiction that there is a natural number n (in the sense of Definition 5.1)
that is not in y, and let m be the least ordinal in S(n) that does not belong to y.4 m cannot
be ∅ as ∅ ∈ y, so m must be a successor ordinal. Thus m= S(k) for some natural number k.
By the choice of m, k ∈ y and hence m ∈ y, a contradiction. �

Using this lemma and Axiom 6 (Infinity), we can apply Axiom 5 (Comprehension) and
get

ω ..= {α ∈ y : α is a natural number} .
We will also use N for ω when we don’t necessarily want to view it as an ordinal.

Proposition 5.4.
(a) ω is a limit ordinal and is the least such.
(b) ω is an inductive set.
(c) ω is the ⊆-least inductive set.

Proof. Left as an exercise. �

Remark 5.5. Part (c) of this proposition is the statement of the (usual) induction theorem
for natural numbers. It says in particular that if P ⊆ w has the property that 0 ∈ P and
n ∈ P ⇒ S(n) ∈ P , for all n ∈ ω, then P = ω.

6. Equinumerosity

There are two ways to figure out whether the number of students is equal to the number
of chairs in the classroom:
(1) Count the students and count the chairs, and see if those numbers are equal.
(2) Ask the students to each pick a chair and sit on it. If there are standing students or

empty chairs, then the answer is no; otherwise, it is yes.
4We used Axiom 5 (Comprehension) here.
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In set theory we take the second approach because that’s the one that works for infinite sets.

Definition 6.1. Two sets A,B are called equinumerous, noted A≡B, if there is a bijection
between them. We write AvB if A is equinumerous with a subset of B, i.e. A injects into
B. Finally, we write A @B if AvB but A .B.

We leave it as an exercise5 to prove that
N≡Z≡Q

and
R≡ (0,1)≡ [0,1]≡ 2N ≡P(N).

Notation: For sets A,B, a function f : A→B and a subset C ⊆ A, let f ′′C or f ′′(C) denote
the image of C under f , i.e.

f ′′C = {b ∈B : ∃a ∈ C(b= f(a))} .
Here is a very easy but relevant lemma:

Lemma 6.2. Let A,B be nonempty sets. Any injection f : A→B has a surjective left inverse
g :B→ A, i.e. g ◦ f = idA.

Proof. Fix a ∈ A and define g :B→ A by setting, for b ∈B,

g(b) =

f−1(b) if b ∈ f ′′A
a otherwise.

�

The following can be safely considered as the first theorem of set theory.

Theorem 6.3 (Cantor). Let A be a set.
(a) There is no surjection f : A�P(A).
(b) P(A) @ A.

Proof. Part (b) follows from (a) by Lemma 6.2. For (a), assume that there is such surjection
f and let B = {a ∈ A : a < f(a)}. Since f is surjective, there is b ∈ A such that f(b) = B.
Now either b ∈ f(b) or b < f(b), and both cases yield a contradiction. �

Definition 6.4. A set A is said to be countable if AvN.

Cantor’s theorem in particular implies that P(N) (and hence also R) is uncountable.
The following theorem helps when proving equinumerosity of sets.

Theorem 6.5 (Cantor–Schröder–Bernstein). For sets A,B, if AvB and B v A, then A≡B.

Proof. Prototypical case: Let A = B = N ∪ {∞}, f(n) ..= g(n) ..= n+ 1, for n ∈ N, and
f(∞) ..= g(∞) ..=∞. To distinguish the two copies of N∪{∞}, denote the elements n of A
and B by nA and nB, respectively. We define a bijection h : A→B as follows:

h(a) ..=

f(a) if a= 2n or a=∞
g−1(a) if a= 2n+ 1.

5Read Theorem 6.5 first.
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Schematically, from 0A
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... ...
...

∞A f //∞B

General case: Let f : A→B and g :B→ A be injections. We prove by reducing this to the
prototypical case as follows: we will obtain partitions

A=
⊔
n∈N

An tA∞ and B =
⊔
n∈N

Bn tB∞

such that f ′′An = Bn+1 and g′′Bn = An+1 for each n ∈N, as well as f ′′A∞ = B∞, so we
define a desired bijection h : A→B just like in the prototypical example, namely, for a ∈ A,

h(a) ..=

f(a) if a ∈ A2n or a ∈ A∞
g−1(a) if a ∈ A2n+1

and have basically the same picture:

from A0
f

#+

B0
g

s{
A1

f

#+

B1
g

s{
A2

f

#+

B2
g

s{
A3

f

#+

B3
g

s{... ...
...

A∞
f +3 B∞

g
ks

obtain A0
f

#+

B0

A1
g−1

3;

B1

A2
f

#+

B2

A3
g−1

3;

B3

... ...
...

A∞ f +3 B∞

To carve out such partitions, we define recursively decreasing sequences (Ān)n∈N and
(B̄n)n∈N by Ā0 ..= A, B̄0 ..=B,

B̄n+1 ..= f ′′Ān, and Ān+1 ..= g′′B̄n,

and let An ..= Ān \ Ān+1, Bn ..= B̄n \ B̄n+1, as well as

A∞ ..=
⋂
n∈N

Ān and B∞ ..=
⋂
n∈N

B̄n.

It remains to verify that the partitions A = ⊔
n∈NAn tA∞ and B = ⊔

n∈NBn tB∞ are as
desired. The injectivity of f implies that f ′′ commutes with set-subtraction and intersections,
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so we have f ′′An = f ′′(Ān \ Ān+1) = f ′′Ān \ f ′′Ān+1 = B̄n+1 \ B̄n+2 =Bn+1 and

f ′′A∞ = f ′′

 ⋂
n∈N

Ān

=
⋂
n∈N

f ′′Ān =
⋂
n∈N

B̄n+1 =
⋂
n∈N

B̄n =B∞.

Similarly, we have the analogous statements for g, which finishes the proof. �

7. Finite/infinite sets and Axiom of Choice

Which sets should be called finite? Intuitively, a set is finite if when we count its elements,
we get a natural number. Here is a formal version of this definition:

Definition 7.1. A set A is said to be finite if it is equinumerous with some natural number.
Otherwise, we say that it is infinite.

There are a few other intuitive definitions of infinite and below we explore the relations
between them.

Definition 7.2 (Dedekind). A set A is called Dedekind infinite if it is equinumerous with a
proper subset of itself, i.e. there is an injection f : A→ A with f ′′A ( A. Otherwise, A is
said to be Dedekind finite.

Proposition 7.3. Finite sets are Dedekind finite.

Proof. It is enough to prove that natural numbers are Dedekind finite, and we do this by
induction on ω. It is trivial that ∅ is Dedekind finite since it does not have proper subsets.
Assume n is Dedekind finite and show that so is n+ 1. It is enough to show that every
injection from n+ 1 to n+ 1 is surjective. Let f : n+ 1→ n+ 1 be an injection. We first
claim that without loss of generality we may assume that f ′′n⊆ n: otherwise, f(n)< n and
m ..= f−1(n) < n, and by swapping the values of f(m) and f(n) we will achieve f ′′n ⊆ n.
Since f |n : n→ n is injective, it must also be surjective by the induction hypothesis. Thus
f(n) must be equal to n, and hence f is surjective as well. �

One could also define infinite sets to be exactly those sets A, for which ω v A. The
following proposition shows that this notion coincides with Dedekind infinite.

Proposition 7.4. A set A is Dedekind infinite if and only if ω v A. In particular, ω is
Dedekind infinite.

Proof. ⇒: Let f : A → A be an injection such that f ′′A ( A. For each n ∈ N, put
Bn ..= (fn)′′(A \ f ′′A). Because f is injective, it respects the setminus operation and thus,
f ′′Bn = (fn)′′(A) \ (fn+1)′′(A), so, the sets Bn are pairwise disjoint. Fix x ∈B0 and define
g : ω→ A by n 7→ fn(x). This g is injective because g(n) ∈Bn.
⇐: Instead of a proof, I will tell you the story of Hilbert’s hotel. It has ω-many rooms and
all of them are occupied. However, a new guest comes and demands a room. To resolve the
situation, the hotel manager simply asks all of the tenants to move to the room next to their
current room with one higher number, thus making room number 0 available for the new
guest. �

There is yet another notion of infinite for a set A, namely, the existence of a surjection
A� ω. By Lemma 6.2, ω v A implies A� ω.

To summarize, we have mentioned the following notions of infinite for a set A:
(1) A is not equinumerous with a natural number.
(2) A is Dedekind infinite.
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(3) ω v A.
(4) A� ω.

So far, we have shown that (2)⇒(1), (2)⇔(3), and (3)⇒(4). Our intuition (at least mine)
tells us that all of these notions should be equivalent. Let’s attempt to prove for example
that (1)⇒(3).
Attempt to prove (1)⇒(3). Suppose that A is not equinumerous with a natural number, and
try to recursively define an embedding f : ω→ A as follows: fix a0 ∈ A, and for n ∈ ω, put

f(n) ..=

some element from A \
(
(f |n)′′n

)
if A \

(
(f |n)′′n

)
, ∅

a0 otherwise.

The first condition must hold since otherwise f |n would be a bijection from n to A, contra-
dicting our hypothesis. Thus f is injective and we are done.

However, something is wrong with the above recursive definition. Namely, the right side
is not a (predefined) function. The expression “some element from A \

(
(f |n)′′n

)
” does not

define a correspondence n 7→ an ∈ A \
(
(f |n)′′n

)
for all n ∈ ω at once. What would fix our

problem6 is if we had a “choice” function c : P(A)→ A such that for each nonempty B ⊆ A,
c(B) ∈B. Then we would define our f by

f(n) = c(A \ (f |n)′′n),
for n ∈ ω, and this f would clearly work.

Similarly, if we had such a choice function c : P(A)→ A, we could prove that (4)⇒(3) as
follows: if f : A→ ω is a surjection, then define g : ω→ A by a 7→ c(f−1(a)). Clearly g is
injective.

Thus, the existence of a choice function c : P(A)→ A would prove the equivalence of
(1)-(4). Does such a function always exist? This is not postulated by any of the axioms of
ZF, and in fact, the existence of such a choice function cannot be proven from ZF7. Hence,
we need an extra axiom (Axiom 9), called Axiom of Choice (AC), that states the following:
If A is a set whose elements are nonempty sets, then there exists a choice function; that is, a

function f : A→ ⋃
A such that for every x ∈ A, f(x) ∈ x.

The proof system ZF+AC is called the Zermelo–Fraenkel set theory with Choice and
denoted by ZFC. Below, all of the statements or exercises that use AC are marked with (AC).

Using the above attempts to prove (1)⇒(3) and (4)⇒(3), we now get

Proposition 7.5 (AC). For a set A, the following are equivalent:
(1) A is not equinumerous with a natural number.
(2) A is Dedekind infinite.
(3) ω v A.
(4) A� ω.

For this and many other reasons, most mathematicians work in ZFC rather than in ZF.

Remark 7.6. To prove (1)⇒(3) and (4)⇒(3), one does not need the full power of AC: it is
enough to assume a weaker axiom, called Dependant Choice (DC), which (roughly speaking)

6I’m not saying this is absolutely necessary; one could get away with something a bit weaker.
7This is a highly nontrivial theorem.
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gives a function that makes a choice depending on the previously made choices. This is
exactly what we used in the attempt to prove (1)⇒(3).

8. Cardinals and cardinality

Definition 8.1. An ordinal α is called a cardinal if there is no ordinal β < α such that β ≡ α.

Proposition 7.3 implies the following:

Corollary 8.2.
(a) Every natural number is a cardinal.
(b) ω is a cardinal.

Definition 8.3. Let A be a set and κ a cardinal. A set A is said to have cardinality κ if A≡ κ.
We denote this by |A| = κ. We say that A has cardinality if it has cardinality λ for some
cardinal λ.

Does every set have cardinality? The following lemma gives a reformulation of this question:

Lemma 8.4. A set A has cardinality if and only if it can be well-ordered.

Proof. ⇒: If there is a bijection f : A→ κ for some cardinal κ, just copy the well-ordering of
κ to A via f .
⇐: If there is a well-ordering <A on A, then by Theorem 3.12, there is an ordinal α such
that (A,<A)' α. Put

κ= min{β 6 α : A≡ β} .

It is clear that κ is a cardinal and |A|= κ. �

Thus, the real question is whether every set can be well-ordered or not. Think of R for
example: the natural ordering of R is a linear ordering but not a well-ordering. In fact, it
cannot be proved in ZF that R can be well-ordered. More generally, it turns out that the
statement “every set can be well-ordered” is equivalent to AC and is known as Zermelo’s
theorem. We state this in Theorem 8.6 together with an equivalent formulation called Zorn’s
lemma. First, we need the following:

Definition 8.5. Let A be a set and < be an ordering on it. An element a ∈ A is called an
upper bound for a subset B ⊆ A if for any b ∈B, b 6 a.8 B is called a chain if < |B is a linear
ordering on B. An element a ∈ A is called maximal if there is no element b ∈ A with a < b.

Theorem 8.6. Each of the following statements is equivalent to AC:
1. Zorn’s Lemma: For every ordered set (A,<) whose every chain has an upper bound, there

is a maximal element in A.
2. Zermelo’s Theorem: Every set can be well-ordered.

Proof. The proof is outlined in Exercises 9 to 11. �

Corollary 8.7 (AC). Every set has cardinality.

8As usual, 6 means < or =.
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9. Uncountable cardinals and the Continuum Hypothesis

We now consider the question of whether there exists uncountable cardinals; more generally,
given a cardinal κ, is there a cardinal greater than κ? By Cantor’s theorem, we have κ @P(κ).
By AC, P(κ) has cardinality and thus λ ..= |P(κ)|> κ. This shows that the answer to the
question is positive in ZFC.

Can we prove this in ZF? The answer is still yes, and it follows from the following theorem:

Theorem 9.1 (Hartogs). For every set A, there is a cardinal κ such that κ @ A. We denote
the least such κ by χ(A).

Proof. Put

WO(A) ..=
{

(B,<B) ∈P(A)×P(A2) :B ⊆ A and <B is a well-ordering on B
}
,

and, recalling Definition 3.13, put

χ(A) = {tp(B,<B) : (B,<B) ∈WO(A)} ;

this set exists by Axiom 8 (Replacement). Clearly χ(A) is a transitive set of ordinals, and
hence an ordinal itself, by (c) of Lemma 3.5. To show that χ(A) @ A, assume for contradiction
that there is an injection f : χ(A)→ A and put B = f ′′χ(A). Let <B be the push-forward of
∈ |χ(A) to a relation on B, i.e. for b1, b2 ∈B,

b1 <B b2 ⇐⇒ f−1(b1) ∈ f−1(b2).

By definition, f is an isomorphism from
(
χ(A),∈

)
to (B,<B), and hence <B is a well-

ordering on B. Therefore, (B,<B) ∈WO(A) and thus tp(B,<B) ∈ χ(A). But by uniqueness,
tp(B,<B) = χ(A), so χ(A) ∈ χ(A), contradicting part (a) of Lemma 3.3.

A similar argument shows that χ(A) is the least ordinal with χ(A) @ A, and hence a
cardinal. �

Remark 9.2. There is a version of Hartogs’ theorem that doesn’t require Axiom 8 (Replace-
ment). It is stated in Exercise 13.

Notation 9.3. For a cardinal κ, put κ+ ..= χ(κ). Thus κ+ is the least cardinal greater than κ.
In general, for every ordinal α, we can define the αth infinite cardinal ℵα by recursion on α
as follows:

ℵα =


ω if α = 0
ℵ+
β if α = S(β)

supβ<αℵβ if α is a limit
.

For small cardinals such as ℵ0,ℵ1,ℵ2, it is also common to use the notation ω0,ω1,ω2, instead.

Continuum hypothesis. One of the most notorious questions in set theory (or in mathematics
in general) is whether ω1 = |P(N)|; equivalently, whether ω1 = |R|. The positive answer to
this is known as the Continuum Hypothesis (CH). In 1940, Gödel showed that it is consistent
with ZFC that CH holds. On the other hand, Cohen proved in 1963 that the failure of CH is
also consistent with ZFC, thus showing the independence of CH from ZFC. To do this, Cohen
introduced his famous method of forcing, which, together with its numerous variations, has
since been the main method of proving independence results.
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10. Cofinality and Kőnig’s theorem

Definition 10.1. For κ a cardinal and β an ordinal, a sequence (xα)α<β of ordinals xα ∈ κ
is called cofinal in κ if for every γ < κ, there is an index α < β with xα > γ. We refer to β
as the length of this sequence and define the cofinality of κ to be the length of the shortest
cofinal sequence in κ, i.e. cof(κ) ..= the least ordinal β such that there is a cofinal sequence
(xα)α<β in κ.

For example, cof(ω) = ω, cof(ℵω) = ω, but cof(ω1) = ω1 (the proof of this is outlined in
the exercises below).

Definition 10.2. A cardinal κ is called regular if cof(κ) = κ; otherwise, it is called singular.

In the examples above, w and w1 are regular. In general, for an infinite cardinal κ, κ+ is
always regular (this is also outlined in the exercises below). However, ℵω is singular.

Cantor’s theorem implies that κ @ 2κ and thus κ @ κκ for an infinite cardinal κ. What
about κcof(κ)? Do we still have κ @ κcof(κ)? The following theorem generalizes Cantor’s
theorem and gives an affirmative answer to the latter question.

Notation 10.3. Let I be a set and (Ai)i∈I be a sequence of sets. We denote by ⊔i∈IAi the
disjoint union of Ai, i.e. ⊔i∈IAi ..= ⋃

i∈I {i}×Ai.

Theorem 10.4 (Kőnig). Let I be a set and (Ai)i∈I ,(Bi)i∈I be sequences. If Ai @ Bi for all
i ∈ I, then ⊔

i∈IAi @
∏
i∈IBi.

We prove this theorem below, but first note that this is indeed a generalization of Cantor’s
theorem since applying it to I = ω, Ai = 1 and Bi = 2 (for all i ∈ ω), gives ω @ 2ω. Moreover,
we also get:

Corollary 10.5. κ @ κcof(κ), for every infinite cardinal κ. In particular, ℵω @ ℵωω.

Proof. Put I = cof(κ) and let (Ai)i∈I be a cofinal sequence in κ, and thus, ⋃i∈IAi = κ.
Putting Bi = κ, it is clear that Ai @ Bi. Hence, Kőnig’s theorem implies κ = ⋃

i∈IAi v⊔
i∈IAi @

∏
i∈IBi = κcof(κ). �

Proof of Theorem 10.4. First, we show that ⊔i∈IAi v∏i∈IBi. Using AC, we get a sequence
(fi)i∈I of injections fi : Ai ↪→ Bi. Note that because Bi @ Ai, none of these fi is surjective,
so Bi \ f ′′i Ai , ∅. Applying AC again, we get a sequence x = (xi)i∈I ∈

∏
i∈IBi such that

xi ∈Bi \ f ′′i Ai for each i ∈ I. Finally, we define f : ⊔i∈IAi→∏
i∈IBi by

f(i,a)(j) ..=

fi(a) if j = i

xj otherwise.

It is easy to check that f is injective and thus ⊔i∈IAi v∏i∈IBi.
Now suppose towards a contradiction that there is a surjection g : ⊔i∈IAi�∏

i∈IBi. We
will define x ∈∏i∈IBi that is not in the image of g.

The main point is that the map gi : Ai→Bi defined by a 7→ g(i,a)(i) cannot be surjective
by the hypothesis, so Bi \ g′′i Ai , ∅ and we can choose a point from it. To this end, fix a
choice function π : P (⊔i∈IBi) \ {∅}→ ⊔

i∈IBi. Now for each i ∈ I, we define the value x(i)
such that it ensures x is not in the g-image of {i} ×Ai, namely: x(i) ..= π (Bi \ g′′i Ai) . It
is clear that x is not in the image of g, for if x = g(i,a) for some i ∈ I and a ∈ Ai, then
x(i) , gi(a) = g(i,a)(i). �

18



11. Classes

This section can be safely skipped by an impatient reader. It was mainly written to satisfy
the curiosity of those readers (in particular, the author’s significant other), who have heard
the phrase “It’s a proper class, not a set.” and have always wondered what it means.

Given a mathematical statement (formula) ϕ(x), one may wonder if there exists a set y
such that

y = {x : ϕ(x)} ,
i.e. y contains all of the sets (in the world) that satisfy ϕ(x). The answer of course depends
on ϕ. For example, if ϕ(x) is the statement “x ∈ z”, for some set z, then such a set y exists,
namely y = z. Another such example is ϕ(x) ≡ “∀y ∈ x(y , y)” as {x : ϕ(x)} = ∅. On the
other hand, if ϕ(x) is the statement “x < x”, then such y doesn’t exist since if it did, then
either y ∈ y or y < y, and both yield a contradiction. (This is the famous Russell’s paradox.)

However, when writing proofs or theorems, it is often convenient to refer to {x : ϕ(x)} as
if it was a set (even when it isn’t) and call it a class. This is just abuse of language and is
not part of formal mathematics. The word class stands for the totality of all sets satisfying
the formula ϕ, and it can be eliminated from any statement that contains it, although this
usually makes statements longer. For example, for a class C = {x : ϕ(x)}, the statement
“x ∈ C” really means “x satisfies ϕ”. A perhaps more convincing example is the statement
“The class ON of all ordinals is well-ordered by ∈.” as it is equivalent to the statement of (b)
of Lemma 3.4 together with (b) of Lemma 3.5.

The classes that are not equal to sets (like the class defined by “x < x”) are called proper
classes. The intuition is that proper classes are “too big” to be sets. The existence of such
classes comes from the fact that it is not postulated by ZF (or ZFC) that for a given formula
ϕ(x), there must be a set y such that y = {x : ϕ(x)}. What is postulated is Axiom Schema
of Comprehension (Axiom 5), which we recall here:

For every set y, there is a set z such that z = {x ∈ y : ϕ(x)}.
Thus, to avoid ending up with a proper class when trying to define a set, we make sure

that all of the elements we want to put in our set a priori belong to some (perhaps larger)
set. In rare cases when this is not possible, we may need to use Axiom 8 (Replacement)
instead, as we did in the proof of Theorem 3.12.
Proposition 11.1. The following classes are proper:
(a) R = {x : x < x};
(b) V = {x : x= x};
(c) ON = {x : x is an ordinal}.
Proof. Part (a) is left as an exercise. For (b), note that if V was a set, then by Axiom 5
(Comprehension), R = {x ∈ V : x < x} would also be a set, which is a contradiction. Part (c)
is left as an exercise. �

Exercises

1. Let x,y,A,B be sets.
(a) Show that {x} is a set.
(b) Show that (x,y) ..= {{x} ,{x,y}} is a set and write a formula ϕ(z) that holds if and

only if z is an ordered pair. Moreover, write formulas ϕ0(z,x) and ϕ1(z,y) such that
ϕ0(z,x) and ϕ1(z,y) hold if and only if z = (x,y). In other words, ϕ0 defines the
function z 7→ x and ϕ1 defines the function z 7→ y.
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(c) Show that A×B ..= {(x,y) : x ∈ A∧ y ∈B} is a set.
(d) Define the notion of a function f : A→ B as a certain subset of A×B, i.e. write

down which sets are called functions from A to B.

2. Show that the powerset of a transitive set is transitive.

3. Prove part (d) of Lemma 3.3 and part (a) of Lemma 3.4. Do not use any of the later parts
(b)-(c) of Lemma 3.4 in your proofs.

4. Prove that there does NOT exist a set that contains all of the ordinals.

5. Prove Lemma 3.11.

6. Prove Proposition 5.4.

7. Prove that N≡Z≡Q.

8. Prove that R≡ (0,1)≡ [0,1]≡ 2N ≡P(N).

9. Prove that AC implies Zorn’s Lemma.
Outline: Let (A,<) be as in the statement of Zorn’s Lemma and assume for con-
tradiction that no element is maximal. Then for every chain C ⊆ A, the set U(C) =
{a ∈ A : ∀b ∈ C(b < a)} of strict upper bounds is nonempty. Hence, denoting the set
of all chains in A (including the empty set) by Chains(A), AC provides a function
f : Chains(A) → A mapping each chain C to an element in U(C). Using f , obtain a
contradiction by defining an injection of χ(A) into A by transfinite induction.

10.Prove that Zorn’s Lemma implies Zermelo’s Theorem.
Hint: For a set A, consider (WO(A),≺), where WO(A) is as in the proof of Theorem 9.1.

11.Prove that Zermelo’s Theorem implies AC.
Caution: It is easy to accidentally use AC in your proof. Make sure you don’t.

12.(a) Prove without using AC that for a cardinal κ > ω, |κ×κ|= κ.
Hint: Define a well-ordering <2 of κ×κ (using the well-ordering of κ) such that the
cardinality of every proper initial segment of (κ×κ,<2) is less than κ (think of how
you would do it for κ= ω). Conclude that tp(κ×κ,<2) 6 κ.

(b) (AC) Conclude that if Aα are sets of cardinality at most κ, for α < κ, then |⋃α<κAα| 6
κ. Pinpoint exactly where you use AC.

(c) (AC) Show that for any infinite cardinal κ, κ+ is regular. In particular, ω1 is regular.

13.Prove the following version of Hartogs’ theorem that doesn’t use Axiom 8 (Replacement):

Theorem 11.2 (Hartogs). For every set A, there is a well-ordered set (H(A),<H(A)) such
that H(A) @ A and (H(A),<H(A)) is �-least such well-ordering, i.e. if (B,<B) is another
well-ordering with the property that B @ A, then (H(A),<H(A))� (B,<B).

Outline: Let WO(A) be as in Theorem 9.1 and denote by H(A) the quotient of WO(A) by
the equivalence relation ', i.e. H(A) = WO(A)/'. For (B,<B) ∈WO(A), let [(B,<B)]
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denote the '-equivalence class of (B,<B) in H(A). Define an ordering <H(A) on H(A) as
follows: for [(B,<B)], [(C,<C)] ∈H(A),

[(B,<B)]<H(A)[(C,<C)] ⇐⇒ (B,<B)≺ (C,<C).
Show that <H(A) is actually a well-ordering and verify that (H(A),<H(A)) satisfies the
conclusion of the theorem.

14.Show that R ..= {x : x < x} is a proper class.

15.An open interval in ω1 is a set of the form (α,β) ..= {γ ∈ ω1 : α < γ < β} or [0,α) ..= α, for
some α < β < ω1. The topology generated by open intervals is naturally called the open
interval topology.
(AC) Prove that the open interval topology on ω1 is sequentially compact (i.e. every
sequence has a convergent subsequence), but not compact (in the sense of open covers).

16.Let X be a second-countable topological space.
(a) Show that X has at most continuum many open subsets.
(b) Let α,β,γ denote ordinals. A sequence of sets (Aα)α<γ is called monotone if it

is either increasing (i.e. α < β ⇒ Aα ⊆ Aβ, for all α,β < γ) or decreasing (i.e.
α < β⇒ Aα ⊇ Aβ, for all α,β < γ); call it strictly monotone, if all of the inclusions
are strict.
Prove that any strictly monotone sequence (Uα)α<γ of open subsets of X has countable
length, i.e. γ is countable.
Hint: Use the same idea as in the proof of (a).

(c) Show that every monotone sequence (Uα)α<ω1 open subsets of X eventually stabilizes,
i.e. there is γ < ω1 such that for all α < ω1 with α > γ, we have Uα = Uγ .
Hint: Use the regularity of ω1.

(d) Conclude that parts (a), (b) and (c) are also true for closed sets.
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