1. **The \(\{1, 2, 3, \infty\} \) Theorem.** Let \(X \) be a standard Borel space and let \(f : X \to X \) be a Borel function. Let \(G_f := \text{Graph}(f) \), so \(G_f \) is a Borel directed graph, possibly with loops (indeed, it could be that \(f(x) = x \) for some \(x \in X \)). A *vertex coloring* for such a graph is defined by demanding that any two distinct vertices with a directed edge between them get distinct colors. Prove that \(\chi_B(G_f) \in \{1, 2, 3, \aleph_0\} \), following the steps below.

Let \(E_f \) denote the connectedness relation of \(G_f \). A set \(A \subseteq X \) is called *\(f \)-forward recurrent* for \(x \in X \) if for infinitely-many \(n \in \mathbb{N} \), \(f^n(x) \in A \). Say that \(f \) is *periodic* at \(x \in X \) if there are \(n,p \in \mathbb{N} \), \(p \geq 1 \), such that \(f^{n+tp}(x) = f^n(x) \) for all \(t \in \mathbb{N} \). Call \(f \) *aperiodic* if it is not periodic at any \(x \in X \).

(i) Firstly, re-realize that \(\chi_B(G_f) \leq \aleph_0 \), so assume that \(G_f \) has a finite Borel (vertex) coloring.

(ii) Prove that the points at which \(f \) is periodic form an \(E_f \)-invariant Borel set on which \(E_f \) admits a transversal. Thus, this part can be easily colored with 2 colors in a Borel fashion, so we may assume that \(f \) is aperiodic.

(iii) Fix a finite Borel coloring of \(G_f \) and observe that for each \(x \in X \), one of the colors forms an \(f \)-forward recurrent set. Construct a \(G_f \)-independent Borel set \(A \subseteq X \) that is \(f \)-forward recurrent for every \(x \in X \).

(iv) Given such a set \(A \), color \(G_f \) with 3 colors in a Borel fashion.

HINT: \(A \) is one of the colors.

2. Maybe something fun, like Stravinsky, say *"Infernal Dance of Kashchei and His Subjects"* from Firebird conducted by Pierre Boulez (or Esa-Pekka Salonen’s version).

3. Let \(E \) be a CBER on a standard measure space \((X, \mu)\). Recall that \([E]\) denotes the set of all Borel partial injections \(\pi : X \to X \) such that \(\pi(x) \subseteq x \) for all \(x \in \text{dom}(\pi) \). We denote by \([E]\) the subset of \([E]\) of all entire functions, i.e., those whose domain is \(X \).

Prove that the following are equivalent:

1. \(E \) is measure preserving, i.e., for every \(\pi \in [E] \), \(\mu(\text{dom}(\pi)) = \mu(\text{im}(\pi)) \).

2. Every \(\gamma \in [E] \) is measure preserving.

3. Every Borel action \(\Gamma \curvearrowright X \) of a countable group \(\Gamma \) with \(E_a \subseteq E \) is measure preserving.

4. There is a Borel measure preserving action \(\Gamma \curvearrowright X \) of a countable group \(\Gamma \) with \(E_a = E \).

4. Let \(X \) be Polish and let \(E \) be an analytic equivalence relation on \(X \).

 (a) Show that for an analytic set \(A \), its saturation \([A]_E := \{x \in X : \exists y \in A(xEy)\}\) is also analytic.
Let $A, B \subseteq X$ be disjoint E-invariant analytic sets (i.e., $[A]_E = A$, $[B]_E = B$). Prove that there is an E-invariant Borel set D separating A and B, i.e., $D \supseteq A$ and $D \cap B = \emptyset$.

5. Prisoners and hats

(a) **Nonsmoothness of \mathcal{E}_0.** This question illustrates the nonsmoothness of \mathcal{E}_0, more particularly, how having a selector for \mathcal{E}_0 (provided by AC) causes unintuitive things.

Problem. ω-many prisoners are sentenced to death, but they can get out under the following condition. On the day of the execution they will be lined up, i.e., enumerated $(p_n)_{n \in \mathbb{N}}$, so that everybody can see everybody else but themselves. Each of the prisoners will have a red or blue hat put on them, but he/she won’t be told which color it is (although they can see the other prisoners’ hats). On command, all the prisoners at once make a guess as to what color they think their hat is. If all but finitely many prisoners guess correctly, they all go home free; otherwise all of them are executed. The good news is that the prisoners think of a plan the day before the execution, and indeed, all but finitely many prisoners guess correctly the next day, so everyone is saved. How do they do it?

(b) **Non-2-colorability of the Hamming graph.** This question illustrates that the Hamming graph H on $2^\mathbb{N}$ does not admit a reasonable 2-coloring. The Hamming graph H is defined by putting an edge between two binary sequences if they differ by exactly one bit. Thus, H is a cousin of G_0 and $E_H = \mathcal{E}_0$.

Problem. ω-many prisoners are sentenced to death, but they can get out under the following condition. On the day of the execution they will be lined up, i.e., enumerated $(p_n)_{n \in \mathbb{N}}$, so that everybody can see everybody else but themselves. Each of the prisoners will have a red or blue hat put on them, but he/she won’t be told which color it is (although they can see the other prisoners’ hats). On command, each prisoner, one-by-one (starting from p_0, then p_1, then p_2, etc.), makes a guess as to what color they think their hat is. Whoever guesses right, goes home free. The good news is that the prisoners think of a plan the day before the execution, so that at most one prisoner is executed. How do they do it?

6. Odometer. Let $X_0 = \{ x \in 2^\mathbb{N} : \forall^\infty n \ x(n) = 0 \}$, $X_1 = \{ x \in 2^\mathbb{N} : \forall^\infty n \ x(n) = 1 \}$, and put $X = 2^\mathbb{N} \setminus (X_0 \cup X_1)$. Note that X_0 and X_1 are \mathcal{E}_0-classes, so all we did is throwing away from $2^\mathbb{N}$ two \mathcal{E}_0-classes. Define a continuous action of \mathbb{Z} on X so that the induced orbit equivalence relation E_Z is exactly $\mathcal{E}_0|_X$.

7. Something new I learnt last week: Terry Riley’s “The Wheel and Mythic Birds Waltz\(^1\)”. (There has to be a Kronos Quartet recording, but I can’t find it, please let me know if you can.)

8. Universality of the shift action. Let $\Gamma \curvearrowright X$ be a Borel action of a countable group Γ on a Polish space X. Show that there is a Borel equivariant\(^2\) embedding $f : X \hookrightarrow (2^\mathbb{N})^\Gamma$.

\(^1\)Greg, I like this waltz!

\(^2\)A map is called **equivariant** if it commutes with the action, i.e., $\gamma \cdot f(x) = f(\gamma \cdot x)$, for $x \in X$.

Greg, I like this waltz!
where $\Gamma \curvearrowright (2^\mathbb{N})^\Gamma$ by shift as follows: $\gamma \cdot y(\delta) = y(\delta \gamma)$, for $\gamma, \delta \in \Gamma$, $y \in (2^\mathbb{N})^\Gamma$. In particular, f is a Borel reduction of the induced orbit equivalence relations.

9. For any Polish space X, let $E_0(X)$ denote the equivalence relation of eventual equality on $X^{\mathbb{N}}$, i.e., for $x, y \in X^{\mathbb{N}}$, $x E_0(X) y$ if and only if for all large enough $n \in \mathbb{N}$, $x(n) = y(n)$.

(a) For $\ell : \mathbb{N} \to \mathbb{N}$, let $E_0(\ell)$ be the restriction of $E_0(\mathbb{N})$ to $\mathcal{N}_{\leq \ell} := \{x \in \mathcal{N} : x(n) \leq \ell(n)\}$. Show that $E_0(\ell) \subseteq_c E_0$.

(b) More generally, prove that $E_0(\mathbb{N}) \subseteq_c E_0$.