Math 595: Topics on CBERs

Homework 1

Due: to be determined

1. Prove that every Polish space X admits a Borel (as a subset of X^2) linear order. In fact, show that there is a linear order that is both F_σ and G_δ.

HINT: Use second-countability.

2. Let E be a finite Borel equivalence relation1 on a Polish space X.

 (a) Show that for each $p \in \mathbb{N}^+$, the set $X_p := \{x \in X : |[x]_E| = p\}$ is Borel. Pinpoint each use of Luzin–Novikov.

 (b) Prove that E admits a Borel transversal, i.e., a Borel set $S \subseteq X$ that meets every E-class in exactly one point.

 HINT: Use Problem 1 and Luzin–Novikov.

 (c) Deduce that E-admits a Borel selector, i.e., an E-invariant2 Borel function $s : X \to X$ with $x E s(x)$ for each $x \in X$.

 (d) Take a break and listen to Chopin’s Mazurka in A Minor Op.17 No.4 (performed by Vladimir Ashkenazy).

 (e) Along these lines, show that E is induced by a Borel automorphism $T : X \to X$ (as an action $\mathbb{Z} \curvearrowright X$), i.e., for each $x \in X$, $[x]_E = \{T^n x : n < |[x]_E|\}$.

 HINT: Do this for each X_p separately.

MORE TO BE ADDED.

1This just means each E-class is finite.

2For an equivalence relation E on a set X, a function $f : X \to Y$ is E-invariant if $x_0 E x_1 \Rightarrow f(x_0) = f(x_1)$ for all $x_0, x_1 \in X$.