Math 432: Set Theory and Topology HOMEWORK 3 Due: Feb 21 (Thu)

Exercises from Kaplansky’s book.

TO BE ADDED.

Other (mandatory) exercises.

1. Let \(< \) be a strict partial order on a set \(X \) and let \(Y \subseteq X \). Call \(y_0 \in Y \) \(< \)-minimal in \(Y \) if for any \(y \in Y \), \(y \not< y_0 \). Call \(y_1 \in Y \) \(< \)-least (or \(< \)-minimum) in \(Y \) if for any \(y \in Y \), \(y_1 \leq y \).

 (a) Prove that if \(y_0 \in Y \) is \(< \)-least then it is \(< \)-minimal.

 (b) Give an example of \((X,<) \) and \(Y \subseteq X \) such that \(Y \) admits a \(< \)-minimal element, but does not admit a \(< \)-least element.

 (c) Give an example of \((X,<) \) and \(Y \subseteq X \) such that \(Y \) does not admit any \(< \)-minimal elements.

 (d) Prove that if \(< \) is a total order, then the converse of part (a) holds: if \(y_0 \in Y \) is \(< \)-minimal, then it is \(< \)-least.

 (e) Conclude that if \(< \) is total, then every \(Y \subseteq X \) admits at most one \(< \)-minimal element.

2. Determine which pairs of sets are isomorphic as ordered sets with their usual ordering \(< \). Prove your answers.

 (a) \(\mathbb{N} \) and \(\{ -\frac{1}{n} : n \in \mathbb{N} - \{0\} \} \)

 (b) \(\mathbb{Z} \) and \(\{ \frac{1}{n} : n \in \mathbb{Z} - \{0\} \} \cup \{0\} \)

 (c) \(\mathbb{R} \) and \((0,1) \)

 (d) \(\mathbb{Q} \) and \([0,1) \cap \mathbb{Q} \)

 (e) \((0,2) \) and \((0,1) \cup (1,2) \)

 (f) \((0,2) \) and \((0,1) \cup [2,3) \).

3. (a) Let \((A,<) \) be a well-ordering and let \(f : A \to A \) be an order-homomorphism, i.e.

 \[
 a_0 < a_1 \implies f(a_0) < f(a_1)
 \]

 for all \(a_0, a_1 \in A \). Prove that \(f \) progressive, i.e., \(a \leq f(a) \) for all \(a \in A \).

 (b) Deduce directly from part (a) that \((A,<) \not< (A,<) \) for any well-ordering \((A,<) \).

 Remark. We proved this statement in class as a corollary of the uniqueness lemma for isomorphisms witnessing \(\leq \). The purpose of this exercise is to give a more direct proof.

 (c) Ordering \(\mathbb{N}^2 \) lexicographically, give an example of an order-homomorphism \(f : \mathbb{N}^2 \to \mathbb{N}^2 \) (other than the identity map) such that \(f(n,m) = (n,m) \) for all \((n,m) \geq_{\text{lex}} (2,0) \).

4. Let \((A,<) \) and \((B,<) \) be well orderings.
(a) Prove that there is a set F such that

$$F = \{ f : f \text{ is an order isomorphism between initial segments of } (A, <) \text{ and } (B, <) \}.$$

(b) Prove that for any $f, g \in F$, $f \subseteq g$ or $g \subseteq f$.

(c) Conclude that $f := \bigcup F$ is an order isomorphism (in particular, a function) of an initial segment A' of $(A, <)$ with an initial segment of B' of $(B, <)$.

(d) Prove that $A' = A$ or $B' = B$.

MORE TO BE ADDED.