Exercises from Kaplansky’s book.

Sec 1.4: 8\(^1\), 17\(^2\)

Sec 1.5: 5\(^3\)

Other (mandatory) exercises.

1. For each of the following functions, explicitly define a left and a right inverse of it, if such exist. If any of these inverses doesn’t exist, prove it.
 (a) \(f : \mathbb{N} \to \mathbb{N}\) defined by \(f(n) := n^2\).
 (b) \(f : \mathbb{Z} \to \mathbb{Z}\) defined by \(f(n) := n^2\).
 (c) \(f : \mathbb{Z} \to \{n \in \mathbb{N} : \exists m \in \mathbb{N} n = m^2\}\) defined by \(f(n) := n^2\).

2. Prove that if a function \(f : X \to Y\) has an inverse (two-sided), then this inverse must be unique.

3. (a) For a function \(f : X \to Y\) define a binary relation \(E_f\) on \(X\) by
 \[x_0 E_f x_1 \iff f(x_0) = f(x_1),\]
 for \(x_0, x_1 \in X\). Prove that \(E_f\) is an equivalence relation. Explicitly describe the \(E_f\)-classes.
 (b) Conversely, show that all equivalence relations arise in this fashion. More precisely, for any equivalence relation \(E\) on a set \(X\), find a set \(Y\) and a surjection \(f : X \to Y\) such that \(E_f = E\).
 HINT: Think of the quotient \(X/E\).

4. Read Notation 1.2 and Caution 1.3 in my Intro to Set Theory notes. Use the axioms of ZFC to prove the following.
 (a) There is a set \(S\) satisfying \(S = \emptyset\), i.e., for all sets \(x\), \(x \not\in S\). We denote this set \(S\) by \(\emptyset\) and call it the emptyset.
 (b) For each set \(x\), there is a set \(S\) satisfying \(S = \{x\}\).
 (c) For any sets \(X, Y\), there is a set \(S\) satisfying
 \[S = \{z : z \in X \lor z \in Y\}\]
 We denote this set \(S\) by \(X \cup Y\) and call it the union of \(X\) and \(Y\).
 CAUTION: Union axiom alone doesn’t imply this.

\(^1\)HINT: It is enough (why?) to prove that \(f\) is has an inverse (two-sided).

\(^2\)In part (c), by a set \(X \subseteq A\) being the largest subset of \(A\) with a given property (in this case, the property is that \(f(X) = X\)), they mean that any other \(Y \subseteq A\) with the same property is a subset of \(X\).

\(^3\)Nonvoid means nonempty.
(d) For any sets x,y, there is a set S satisfying $S = \{\{x\}, \{x, y\}\}$. We denote this set S by (x, y) and call it the *ordered pairing* of x, y or just an *ordered pair*.

(e) For any sets X, Y, there is a set S satisfying

$$S = \{z : x \in X \land y \in Y \land z = (x, y)\}.$$

We denote this set by $X \times Y$ and call it the *Cartesian product* of X and Y.

CAUTION: Comprehension only gives the existence of sets of the form

$$\{z \in Z : x \in X \land y \in Y \land z = (x, y)\}$$

for a set Z, so to apply it, one has to first prove the existence of an appropriate Z.

(f) For any sets X, Y, write down a formula $\varphi(f)$ such that for any set f, $\varphi(f)$ says that f is a function from X to Y. Prove that there is a set S satisfying $S = \{f : \varphi(f)\}$. We denote this set S by Y^X and call it the *set of all functions from X to Y*.