Math 574: Set Theory

Homework 8

Due: Apr 12 and 13

Terminology. For a filter \mathcal{F} on a set X, say that a set $A \subseteq X$ is \mathcal{F}-large (resp. \mathcal{F}-small) if $A \in \mathcal{F}$ (resp. $A \in \mathcal{F}'$, i.e. $A^c \in \mathcal{F}$). For a property P of elements of X (in other words, $P \subseteq X$), say that \mathcal{F}-a.e. $x \in X$ has property P, written

$$\forall^\mathcal{F} x \in X \; (x \text{ has property } P),$$

if the set $\{x \in X : x \text{ has property } P\}$ is \mathcal{F}-large.

1. For a set A, let $[A]^2$ denote the collection of all subsets of A of size exactly 2; think of these as edges between the elements of A. Prove the following using an ultrafilter on \mathbb{N}.

Infinite Ramsey Theorem. For any finite coloring of $[\mathbb{N}]^2$, i.e. a function $c : [\mathbb{N}]^2 \to k := \{0, 1, \ldots, k-1\}$, there is an infinite monochromatic set $A \subseteq \mathbb{N}$, i.e. $c|_{[A]^2}$ is constant.

Remark: The usage of an ultrafilter here is an overkill, of course, but a nice one.

Hint: Letting μ be an ultrafilter on \mathbb{N}, derive a coloring c' of \mathbb{N} as follows: for each vertex $v \in \mathbb{N}$, look at the edges incident to v and take the μ-large color. Having colored \mathbb{N}, one of these colors is μ-large. Build a monochromatic subsequence inside this color by induction.

2. Call a set $D \subseteq \mathbb{Z}$ a difference set or a Δ-set if there is a sequence $(z_n)_{n \in \mathbb{N}} \subseteq \mathbb{Z}$ of pairwise distinct elements such that $D := \{z_n - z_m : n > m\}$. Denote the collection of all Δ-sets by Δ.

(a) Show that Δ-sets have the Ramsey property; namely, for any $D \in \Delta$, whenever D is partitioned into two sets, at least one of them contains a Δ-set.

(b) Conclude that $\Delta^* := \{A \subseteq \mathbb{Z} : \forall D \in \Delta \ (A \cap D \neq \emptyset)\}$ is a filter.

3. Let X be a topological space and \mathcal{F} a filter on \mathbb{N}. Call $x \in X$ an \mathcal{F}-limit of a sequence $(x_n)_{n \in \mathbb{N}} \subseteq X$, written

$$\lim_{n \to \mathcal{F}} x_n = x,$$

if for every open neighborhood U of x, $x_n \in U$ for \mathcal{F}-a.e. $n \in \mathbb{N}$.

(a) For which filter \mathcal{F}, the notion of \mathcal{F}-limit coincides with the usual limit?

(b) Now let μ be an ultrafilter on \mathbb{N} and suppose that X is compact (open covers definition). Prove that every sequence in X has a μ-limit.

Definition. Let (\mathbb{P}, \leq) be a partially ordered set, which we call a poset, for short. Say that $p, q \in \mathbb{P}$ are compatible if they admit a common strengthening, i.e. there is $r \in \mathbb{P}$ with $r \leq p$ and $r \leq q$. Otherwise, say that p and q are incompatible, written $p \perp q$.

Definition. For a poset (\mathbb{P}, \leq), a set $F \subseteq \mathbb{P}$ is called a \mathbb{P}-filter if

(i) (Upward closed) $p \in F$ and $q \geq p \implies q \in F$;

(ii) (Contains common strengthenings) $p, q \in F \implies$ there is $r \in F$ with $r \leq p$ and $r \leq q$.

Call a \mathbb{P}-filter F an ultrafilter (or a strongly maximal filter) if for each $p \in \mathbb{P}$ either $p \in F$ or there is $q \in F$ with $p \perp q$.

9:49 pm, Apr 8.
4. Let A, B be sets and let \mathcal{P} be the set of all partial functions $A \to B$ with finite domain. We turn \mathcal{P} into a poset under extension (i.e. reverse inclusion), i.e. for any $p, q \in \mathcal{P}$, $p \leq q :\iff p \supseteq q$. Show that the map $F \mapsto \cup F$ is a bijection between the set of ultrafilters and the set of functions $A \to B$.

5. Let (\mathcal{P}, \leq) be a countable poset. Identifying $X := \mathcal{P}(\mathcal{P})$ with $2^\mathcal{P}$ equips X with the product topology, making it a homeomorphic copy of the Cantor space. Let $X_\mathcal{P} \subseteq X$ denote the set of all \mathcal{P}-ultrafilters.

 (a) Show that $X_\mathcal{P}$ is a G_δ subset of X, i.e. a countable intersection of open sets.

 Remark: X is a Polish space1 (being compact metrizable) and a subset of a Polish space is itself a Polish space (in the relative topology) if and only if it is G_δ (see, for example, Proposition 1.7 in my DST notes). Thus, $X_\mathcal{P}$ is also a Polish space.

 (b) Prove that the sets

 $$U_p := \{ G \in X_\mathcal{P} : p \in G \}, \ p \in \mathcal{P},$$

 form a basis for the topology on $X_\mathcal{P}$.

 (c) Express in terms of the U_p what it means for a set $A \subseteq X_\mathcal{P}$ to be

 (i) open,

 (ii) dense.

1A topological space is called Polish if it is separable and admits a compatible complete metric (the two most important properties of \mathbb{R}). See Section 1 of my DST notes for a gentle and loving introduction to Polish spaces.