Math 574: Set Theory Homework 7 Due: Apr 5 and 6

1.
 (a) \(V_n = L_n \) for each \(n \in \omega \); in particular, \(V_\omega = L_\omega \).

 (b) \(V_{\omega+1} \neq L_{\omega+1} \), in fact, \(|V_{\omega+1}| > |L_{\omega+1}| \).

 REMARK: This is true even when \(V = L \).

2.
 Let \(F(x) \) be a \(\Delta_0 \) class-function and \(R(y, \vec{z}) \) be a \(\Delta_0 \) class-relation. In class we proved that the relation \(R(F(x), \vec{z}) \) is \(\Sigma_1 \) in general. However, prove that for the following class-functions \(F(x) \), \(R(F(x), \vec{z}) \) is \(\Delta_0 \).

 (a) \(F(x) := \bigcup x \) and \(F(x) := \bigcap x \).

 (b) \(F(x) := \text{dom}(x) \) if \(x \) is a function, and \(\emptyset \), otherwise. Also, same with \(\text{dom}(x) \) replaced by \(\text{im}(x) \).

 (c) (Optional) \(F(x) \) is an arbitrary \(\Delta_0 \) class-function such that the relation \(z \in F(x) \) is also \(\Delta_0 \) and for some \(n \in \mathbb{N} \) (a genuine finite number, not an element of \(V \)), \(\forall x F(x) \subseteq cl_n(x) \), where

 \[
 cl_n(x) := \bigcup \bigcup \ldots \bigcup x. \quad \text{n times}
 \]

3.
 Let \(F(x) \) be a \(\Sigma_1 \) class-function and let \(M \) be a transitive model of a large enough finite fragment of ZF. Suppose that for each \(x \) in \(M \) there is \(y \) in \(M \) such that \((F(x) = y)^M \) holds. Prove:

 (a) \(F(x) \) is absolute for \(M \).

 (b) If \(\varphi(y, \vec{z}) \) is an absolute formula for \(M \), then so is \(\exists y (y = F(x)) \land \varphi(y, \vec{z}) \).

 REMARK: If you think this is absolutely trivial, you are right.

4.
 Prove that the following class-functions satisfy the hypothesis of Question 3:

 (a) \(F(x, n) := x^n \) if \(n \in \omega \), and \(\emptyset \), otherwise.

 HINT: \(y = x^n \) if and only if there is a certificate \(c : \omega \to x \) such that \(c(0) = \emptyset \) and for each \(k < n \ldots \)

 (b) \(F(x) := x^{<\omega} \).

 CAUTION: The class-function \(F(x) := x^\omega \) is very nonabsolute.

 Conclude that these class-functions are absolute for transitive models of a large enough finite fragment of ZF.

\(^1\)Thanks to Christian Schulz for suggesting this question.