Math 574: Set Theory

Homework 4

Due: Mar 8 and 9

1. Prove the following metatheorem: Every finite class of \(U \) is a set (i.e. is realized by an element of \(U \)). Explain why this is a metatheorem (i.e. not a first-order statement in \(U \)).

Remark: This question should have been assigned much earlier, but it didn’t occur to me until now.

2. Prove directly that Pairing and Powerset axioms hold in \(V \).

3. Prove that the following class-relations and class-functions, defined in \(T := \text{ZF} - \text{Pow} - \text{Infty} \), are all \(\Delta_0 \) and hence absolute for any transitive model of \(T \). You may choose to prove only half of these, but please choose the ones you doubt most.

Notation and terminology. Below, for class-functions, we just write \(F(\vec{x}) \) instead of \(\vec{x} \mapsto F(\vec{x}) \). Recall that a class-function is \(\Delta_0 \) if, by definition, its graph \(y = F(\vec{x}) \) is \(\Delta_0 \). This includes the 0-ary functions, i.e. constants such as \(\emptyset, \omega \).

(a) \(\{x\} \).

(b) \((x, y) \).

(c) \(z \) is an ordered pair.

(d) \(\emptyset \).

(e) \(x \cup y, x \cap y, x \setminus y \).

(f) \(\bigcup x, \bigcap x \).

(g) \(S(x) := x \cup \{x\} \).

(h) \(x \) is a successor (of some set).

(i) \(x \) is transitive.

(j) \(\in \) is a linear order on \(x \).

(k) \(x \times y \).

(l) \(R \) is a relation, i.e. is a set of ordered pairs.

(m) \(\text{dom}(R) := \{x : \exists y (x, y) \in R\} \) and \(\text{ran}(R) := \{y : \exists x (x, y) \in R\} \), i.e. the class-functions \(F(R, X) \) (resp. \(F(R, Y) \)) defined by setting it to hold if \(R \) is a relation (i.e. a set of ordered pairs) and \(X = \text{dom}(R) \) (resp. \(Y = \text{ran}(R) \)).

Remark: The definition of \(\text{dom}(R) \) is written as a class on purpose: you have to rewrite it so that it is a set and the class-function \(R \mapsto \text{dom}(R) \) is \(\Delta_0 \).

(n) \(f \) is a function.

(o) \(f(x) \), i.e. the class-function \(F(f, x, y) \), which is set to hold exactly when \(f \) is a function, \(x \) is in \(\text{dom}(f) \), and \(y = f(x) \).

(p) \(f \) is a one-to-one function.

TO BE CONTINUED...