Chapter 22: Risk-neutral and martingale pricing

Change of measure

Consider a probability space (Ω, F, P). Let $w: \Omega \to \mathbb{R}^+$ be a function such that $w(\omega) > 0$ for all $\omega \in \Omega$ and such that w is F-measurable, that is, for all $b \in \mathbb{R}$,

$$\{ x \in \Omega : w(x) < b \} \in F,$$

then the integral $\int \omega \, dP$ is defined, but may be $\pm \infty$. In any case, it is ≥ 0. If

$$0 < \int_\Omega \omega \, dP = a < \infty,$$

then $\int_\Omega \frac{w}{a} \, dP = 1$. Write again w instead of $\frac{w}{a}$, hence assuming that $\int_\Omega w \, dP = 1$.

Then for each $A \in F$, we may define

$$\overline{P}(A) = \int_A w \, dP.$$

Then \overline{P} is a new probability measure on Ω. This is called change of measure.
If the change of measure is performed in an interesting way, relative to some quantity such as the price of a stock or bond or zero-coupon, it may be that at the same time we perform a change of numeraire and start measuring other quantities as multiples of the stock or bond or zero-coupon.
Let \((\Omega, \mathcal{F}, P)\) be a probability space, for each \(t \geq 0\) let \(\mathcal{F}_t\) be a \(\sigma\)-algebra on \(\Omega\) such that
\[
\mathcal{F}_s \subset \mathcal{F}_t \subset \mathcal{F}
\]
whenever \(0 \leq s < t\), and let \(X_t\) for \(t \geq 0\) be a stochastic process adapted to the \(\sigma\)-algebras \(\mathcal{F}_t\). Suppose that for all \(t \geq 0\),
\[
\int_{\Omega} |X_t| \, dP < \infty.
\]

We say that the process \(X_t\) is a martingale if, whenever \(0 \leq s < t\) and \(A \in \mathcal{F}_s\), we have
\[
\int_{A} (X_t - X_s) \, dP = 0.
\]
Variable probability measures

We could also consider a more general situation where for each $t \geq 0$ we have a separate probability measure

$$P_t = \mathbb{Q}_t^P$$

where $\mathbb{Q}_t \geq 0$ is a function on Ω, \mathcal{F}_t

$$P_t(A) = \int_A \mathbb{Q}_t^P dP \quad \text{if} \quad A \in \mathcal{F}_t.$$

Here \mathbb{Q}_t is \mathcal{F}_t-measurable.

If now, for all $s < t$, $A \in \mathcal{F}_s$, we have

$$0 = \int_A (X_t - X_s) dP_s = \int_A (X_t - X_s) \mathbb{Q}_t^P dP$$

we can call (X_t) a martingale with respect to the measures P_t.

Girsanov's theorem for a Brownian motion $Z(t)$

$$d\tilde{Z} = \eta dt + dZ \quad \text{is a martingale w.r.t.}$$

$$\mathbb{Q}_t^P, \quad \mathbb{Q}_t^P = \exp\left(-\eta Z(t) - \frac{1}{2} \eta^2 t\right).$$
Utility functions

Consider an investor ("consumer") who at time \(t \) has available wealth \(W(t) \) to invest ("consume") and of which the amount \(C(t) \) is consumed, leaving \(W(t) - C(t) \) available for future use. The consumer takes the view that consuming the amount \(C(t) \) yields a certain utility \(U(C(t), t) \), and the consumer wants to maximize this utility.

We write

\[
U' = \frac{dU}{dC}, \quad U'' = \frac{d^2U}{dC^2}
\]

and assume that as a function of \(C \), \(U \) is increasing and concave, that is, \(U' \geq 0 \) and \(U'' \leq 0 \).

Suppose that at time \(t \), the consumer can change the allocation in his investment portfolio, which contains \(n \) assets (stocks) with prices \(S_i, 1 \leq i \leq n \) (or \(S_i(t) \)). The prices \(S_i \) are random variables and so is \(U \). The decisions at time \(t \) are based on their expected impact on the situation at some future time \(T \).
Denote by $E_t[X]$ the expected value at time t of the random variable X.

It can be shown (we omit the details) that when the utility is maximized, we have

$$E_t \left[U'(T) \frac{S_i(T)}{S_i(t)} \right] = U'(t) = \text{a known quantity}$$

for $1 \leq i \leq n$. (Also $S_i(t)$ is known, so it can be taken out of E_t.)

If we write

$$\frac{1}{1 + \mu_i} = \frac{U'(T)}{U'(t)}$$

this reads

$$E_t \left[\frac{S_i(T)}{1 + \mu_i} \right] = S_i(t), \quad (\mu_i \text{ is a random variable})$$

we may think of $1 + \mu_i$ being a discount factor.

All of the above can be done in a more refined manner if we introduce further notation and consider the various situations ("states") where we may be at each time as a result of the decisions made, but we omit the details.
Change of measure based on utility functions

First consider a simple situation.

Suppose that we have a discrete probability space with infinitely many elements, say \(\Omega = \{1, 2, \ldots, m\} \) for some positive integer \(m \). Write \(p_i = P(\{i\}) \), so each \(p_i \geq 0 \) and
\[
\sum_{i=1}^{m} p_i = 1.
\]

Let \(X \) be a random variable on \(\Omega \) with values \(X(i) \), \(1 \leq i \leq m \). Then the expectation of \(X \) is
\[
E[X] = \sum_{i=1}^{m} p_i x_i.
\]

Suppose that it happens to be the case that all \(x_i \geq 0 \) and
\[
\sum_{i=1}^{m} p_i x_i = 1.
\]

Then the numbers \(p_i x_i \) can be used to define a new probability measure (so this is a change of measure), say
\[
p_i^* = p_i x_i, \quad 1 \leq i \leq m.
\]

The "events" \(\{i\} \) for which \(x_i > 1 \) get a larger probability than before, and those with \(x_i < 1 \) get a smaller probability.
Recall that
\[
E \left[\frac{U'(t) S_i(t)}{U'(t) S_k(t)} \right] = 1,
\]
so we could use this ratio to construct a new probability measure.

If we take the view that as a result of consumption/investment decisions, we could be at any of \(m \) states with labels \(1, \ldots, m \), and if we indicate this by writing

\[
U'(C(T,j), T) \text{ and so on,}
\]

we get for each \(k \),

\[
(\lambda) = \sum_{j=1}^{m} \frac{U'(C(T,j), T) S_k(T,j)}{\sum_{j=1}^{m} \frac{U'(t)}{S_k(t)} S_k(T,j)},
\]

which can also be written as

\[
S_k(t) = \sum_{j=1}^{m} \frac{U'(C(T,j), T)}{\sum_{j=1}^{m} \frac{U'(t)}{S_k(t)} S_k(T,j)}.
\]

Choosing a particular value for \(k \), say \(k = 1 \), and divide both sides by \(S_1(\cdot) \), and get

\[
S_1(t) = \sum_{j=1}^{m} \frac{U'(C(T,j), T)}{\sum_{j=1}^{m} \frac{U'(t)}{S_1(t)} S_1(T,j)} S_1(T,j),
\]

Here we have performed a change of numeraire: we measure \(S_1(t) \) in terms of (or in units of) \(S_1(t) \), and similarly for \(S_k(T,j) \) in units of \(S_1(T,j) \).
Note that taking \(k = 1 \) in (14), we get
\[
1 = \sum_{j=1}^{m} \frac{p_j}{U'(C(T,j),T) S_j(T,j)} \quad \frac{S_j(T,j)}{S_j(T)} \quad \frac{p_j}{U'(T) S_j(T)}
\]
so that in the end, we have performed both a change of measure and a change of
numeraire. If we write
\[
\frac{S_i(T)}{S_j(T)} = \frac{U'(C(T,i),T) S_i(T,i)}{U'(T) S_i(T)} \quad \frac{U'(C(T,j),T) S_j(T,j)}{U'(T) S_j(T)} \quad \frac{p_j}{S_j(T,j)} \quad \frac{p_i}{S_i(T,i)}
\]
then the above reads
\[
\frac{S_k(T)}{S_i(T)} = \sum_{j=1}^{m} \frac{p_j}{S_j(T,j)} \quad \frac{S_j(T,j)}{S_i(T,i)} \quad \frac{S_j(T,j)}{S_j(T)}
\]
That is, the superscript refers to the new
\[
\frac{S_k(T)}{S_i(T)} = E \left[\frac{S_k(T)}{S_i(T)} \right]
\]
This means that the ratio \(\frac{S_k}{S_i} \) is a
martingale (with respect to this new
family of probability measures). This is a
general idea in pricing models: the ratio
of any two asset prices should be a
martingale (with respect to an appropriate
probability measure).