Learning Objectives:

6.1 Introduction to Exotic Options: plan vanilla options, non-standard option characteristics, exotic options, gap, exchange, maxima and minima, chooser, forward start, Asian (arithmetic and geometric), barrier, lookback, compound, shout, path-dependency, path-independent, path-dependent, closed-form valuation formula, binomial model.

6.2 Exotic Options I: payment trigger, strike price, European gap call and put, obligation, negative payoff, decomposition, Greeks, deterministic cash, short risky asset, exchange option, European maximum and minimum contingent claim, decomposition, chooser option, choose, call or put, choosing decision, decomposition, forward start call and put option, strike price determined at intermediate date observed risky asset price, not observed, price.

6.3 Exotic Options II: TBA

Further Exercises:

SOA Advanced Derivatives Samples Question 42.
6.1 Introduction to Exotic Options

6.1.1 The options considered in this course so far are called plain vanilla options. Options with non-standard option characteristics differed from plain vanilla options are called exotic options, which are actively traded OTC.

6.1.2 Gap, exchange, maxima and minima, chooser, forward start, Asian (arithmetic and geometric), barrier, lookback, compound, and shout options are the exotic options appeared in the SOA IFM examination syllabus.

6.1.3 Exotic options can be categorized by path-dependency. Path-independent exotic options are those whose payoffs at the exercise date depend only on the underlying risky asset price at the exercise date. Path-dependent exotic options are those whose payoffs at the exercise date depend on the underlying risky asset price at some intermediate date(s), between the issuance date and the exercise date. Gap, exchange, maxima and minima, and compound options are path-independent; chooser, forward start, Asian, barrier, lookback, and shout options are path-dependent.

6.1.4 Pricing and hedging exotic options are not easy tasks at all. The first batch of exotic options discussed below are those with simple closed-form valuation formula under the continuous-time Black-Scholes framework; the second batch of exotic options discussed below are those without simple closed-form valuation formula under the continuous-time Black-Scholes framework, and hence the binomial model must be resorted.

6.2 Exotic Options I: Gap, Exchange, Maxima and Minima, Chooser, and Forward Start

6.2.1 Recall that a long plain vanilla European call option, with strike price K and expiration date T, has the payoff at the expiration date T:

$$ (S_T - K)_+ = (S_T - K) 1_{\{S_T > K\}}. $$

The K appeared in the indicator function is in fact more precisely called the payment trigger; the other K is really the strike price of the option, which is the price that the long position will have to pay at time T if he/she chooses to exercise the option.

6.2.2 If these two K's are different, say strike price K_1 and payment trigger K_2, with $K_1 \neq K_2$, this option is called a European gap call option:

| Payoff of long gap call option at $T_1 = (S_T - K_1)_+ 1_{\{S_T > K_2\}}. |

Similarly, the long payoff of a European gap put option is given by:

| Payoff of long gap put option at $T = (K_1 - S_T)_+ 1_{\{S_T < K_2\}}. |

2
6.2.3 Though gap call/put options are called options, the long position of these options actually holds his/her obligation instead of right. Therefore, the payoffs of long gap call/put options could be positive or negative:

6.2.4 Thanks to the most general risk-neutral valuation formula in 4.2.8, together with similar arguments as in 4.1.13 (but under \mathbb{Q}, and thus using r),

\[
C_{\text{gap}}(t, S; \delta, r, \sigma; K_1, K_2, T) = Se^{-\delta(T-t)}N(d_1) - K_1e^{-r(T-t)}N(d_2) = \frac{F^P_{t,T}(S)N(d_1) - PV_{t,T}(K_1)N(d_2)}{\sigma \sqrt{T-t}},
\]

\[
P_{\text{gap}}(t, S; \delta, r, \sigma; K_1, K_2, T) = K_1e^{-r(T-t)}N(-d_2) - Se^{-\delta(T-t)}N(-d_1) = PV_{t,T}(K_1)N(-d_2) - \frac{F^P_{t,T}(S)N(-d_1)}{\sigma \sqrt{T-t}},
\]

where d_1 and d_2 are given by

\[
d_1 = \frac{\ln \left(\frac{S}{K_2} \right) + (r - \delta + \frac{1}{2}\sigma^2)(T-t)}{\sigma \sqrt{T-t}} = d_2 + \sigma \sqrt{T-t},
\]

\[
d_2 = \frac{\ln \left(\frac{S}{K_2} \right) + (r - \delta - \frac{1}{2}\sigma^2)(T-t)}{\sigma \sqrt{T-t}} = d_1 - \sigma \sqrt{T-t}.
\]

6.2.5 A brutal\footnote{Now, you should be able to understand why I always emphasized that we should learn proofs. More complicated formula are on their ways :) } way to memorize these formula is to remember that the payment trigger K_2 appears in the d_1 and d_2 terms, while the strike price K_1 appears outside the standard normal distribution function $N(\cdot)$.

6.2.6 Another equivalent forms of the valuation formula are given by:

\[
C_{\text{gap}}(t, S; \delta, r, \sigma; K_1, K_2, T) = C(t, S; \delta, r, \sigma; K_2, T) + (K_2 - K_1)e^{-r(T-t)}N(d_2);
\]

\[
P_{\text{gap}}(t, S; \delta, r, \sigma; K_1, K_2, T) = P(t, S; \delta, r, \sigma; K_2, T) + (K_1 - K_2)e^{-r(T-t)}N(-d_2).
\]
Indeed, the payoff of long gap call option can be decomposed as:

\[(S_T - K_1) \mathbb{1}_{\{S_T > K_2\}} = (S_T - K_2)_+ + (K_2 - K_1) \mathbb{1}_{\{S_T > K_2\}},\]

and hence the most general risk-neutral valuation formula in 4.2.8, together with similar arguments as in 4.1.10 (but under \(Q\), and thus using \(r\)), can be applied. Similarly, the payoff of long gap put option can be decomposed as:

\[(K_1 - S_T) \mathbb{1}_{\{S_T < K_2\}} = (K_2 - S_T)_+ + (K_1 - K_2) \mathbb{1}_{\{S_T < K_2\}},\]

and hence, 4.2.8 and similar arguments as in 4.1.9 (but under \(Q\), and thus using \(r\)), can be applied.

6.2.7 The equivalent forms in 6.2.6 are handy in calculating the Greeks of gap call/put options. For instance,

\[
\Delta_{C_{\text{gap}}} = \Delta_C + (K_2 - K_1) e^{-r(T-t)} \frac{\partial N(d_2)}{\partial S} = e^{-\delta(T-t)} N(d_1) + (K_2 - K_1) \frac{e^{-r(T-t)}}{S\sigma\sqrt{T-t}} N'(d_2);
\]

\[
\Delta_{P_{\text{gap}}} = \Delta_P + (K_1 - K_2) e^{-r(T-t)} \frac{\partial N(-d_2)}{\partial S} = -e^{-\delta(T-t)} N(-d_1) - (K_1 - K_2) \frac{e^{-r(T-t)}}{S\sigma\sqrt{T-t}} N'(-d_2).\]

Example 1 [SOA Advanced Derivatives Sample Question Q18]: A market-maker sells 1,000 1-year European gap call options, and delta-hedges the position with shares. You are given:

(i) Each gap call option is written on 1 share of a non-dividend-paying stock.
(ii) The current price of the stock is 100.
(iii) The stock’s volatility is 100%.
(iv) Each gap call option has a strike price of 130.
(v) Each gap call option has a payment trigger of 100.
(vi) The risk-free interest rate is 0%.

Under the Black-Scholes framework, determine the initial number of shares in the delta-hedge.

Solution:
Exercise 1 [SOA Exam MFE Spring 2007 Question Q17]: Let S_t denote the price at time t of a stock that pays dividends continuously at a rate proportional to its price. Consider a European gap option with expiration date T, $T > 0$. If the stock price at time T is greater than $100, the payoff is $S_T - 90$; otherwise, the payoff is zero. You are given:

(i) $S_0 = $80.

(ii) The price of a European call option with expiration date T and strike price 100 is 4.

(iii) The delta of the call option in (ii) is 0.2.

Calculate the price of the gap option.

6.2.8 Recall that the long position of a plain vanilla European call option, with strike price K and expiration date T, pays deterministic cash K and longs the underlying risky asset at T, if he/she chooses to exercise the option.

6.2.9 If, instead of deterministic cash, the long position shorts the other risky asset and longs the underlying risky asset at time T when he/she chooses to exercise the option, then this option is called exchange option.

6.2.10 More precisely, let $S^1 = \{S^1_t\}_{t \geq 0}$ and $S^2 = \{S^2_t\}_{t \geq 0}$ be prices of the risky asset 1 and the risky asset 2. The payoff of a long T-year European exchange option, such that the long position holds the right to exchange S^2 (short) for S^1 (long), is given by:

\[
\text{Payoff of long exchange option at } T = (S^1_T - S^2_T)_+.
\]

6.2.11 By symmetry, the difference between call and put exchange options is minimal, as long as the right of short S^2 and long S^1 is clearly defined. However, the difference between long and short positions of an exchange option still matters.

6.2.12 A simple closed-form valuation formula is available under the continuous-time Black-Scholes framework2:

\[
V_{ex}(t, S^1, S^2; \delta_1, \sigma_1, \sigma_2, \rho; T) = S^1 e^{-\delta_1(T-t)} N(d_1) - S^2 e^{-\delta_2(T-t)} N(d_2) = F_{t,T}^P(S^1) N(d_1) - F_{t,T}^P(S^2) N(d_2),
\]

where d_1, d_2, and σ are given by

\[
d_1 = \frac{\ln \left(\frac{S^1}{S^2} \right) + (\delta_2 - \delta_1 + \frac{1}{2} \sigma^2)(T-t)}{\sigma \sqrt{T-t}} = d_2 + \sigma \sqrt{T-t},
\]

2In fact, we have to generalize the Black-Scholes model to include two risky assets and two Brownian motions, which induces a dependence structure between two risky asset prices. Hence, the proof of this formula is indeed beyond the scope of this course.
$$d_2 = \frac{\ln \left(\frac{S^1}{S^2} \right) + (\delta_2 - \delta_1 - \frac{1}{2} \sigma^2) (T - t)}{\sigma \sqrt{T - t}} = d_1 - \sigma \sqrt{T - t},$$

$$\sigma = \sqrt{\sigma_1^2 + \sigma_2^2 - 2 \rho \sigma_1 \sigma_2}.$$

6.2.13 A brutal way to memorize this formula is to remember that the deterministic cash K is replaced by the other risky asset price S^2 while the risk-free interest rate r for K is replaced by the dividend yield δ_2 for S^2.

6.2.14 The payoff of a long T-year European maximum contingent claim written on S^1 and S^2 is given by:

Payoff of long maximum contingent claim at $T = \max \{ S^1_T, S^2_T \}$.

6.2.15 Since this payoff of long maximum contingent claim can be decomposed as:

$$\max \{ S^1_T, S^2_T \} = S^1_T + (S^2_T - S^1_T)_+$$

$$= S^2_T + (S^1_T - S^2_T)_+,$$

together with 4.2.8 and 6.2.12,

$$V_{\text{max}} (t, S^1, S^2; \delta_1, \delta_2, \sigma_1, \sigma_2, \rho; T) = S^1 e^{-\delta_1 (T-t)} + V_{\text{ex}} (t, S^2, S^1; \delta_2, \delta_1, \sigma_2, \sigma_1, \rho; T)$$

$$= S^2 e^{-\delta_2 (T-t)} + V_{\text{ex}} (t, S^1, S^2; \delta_1, \delta_2, \sigma_1, \sigma_2, \rho; T).$$

6.2.16 The payoff of a long T-year European minimum contingent claim written on S^1 and S^2 is given by:

Payoff of long minimum contingent claim at $T = \min \{ S^1_T, S^2_T \}$.

6.2.17 Since this payoff of long minimum contingent claim can be decomposed as:

$$\min \{ S^1_T, S^2_T \} = S^1_T - (S^2_T - S^1_T)_+$$

$$= S^2_T - (S^2_T - S^1_T)_+,$$

together with 4.2.8 and 6.2.12,

$$V_{\text{min}} (t, S^1, S^2; \delta_1, \delta_2, \sigma_1, \sigma_2, \rho; T) = S^1 e^{-\delta_1 (T-t)} - V_{\text{ex}} (t, S^1, S^2; \delta_2, \delta_1, \sigma_2, \sigma_1, \rho; T)$$

$$= S^2 e^{-\delta_2 (T-t)} - V_{\text{ex}} (t, S^2, S^1; \delta_1, \delta_2, \sigma_2, \sigma_1, \rho; T).$$
Example 2 [SOA Advanced Derivatives Sample Question Q54]: Assume the Black-Scholes framework. Consider two non-dividend-paying stocks whose time-\(t \) prices are denoted by \(S_t^1 \) and \(S_t^2 \), respectively. You are given:

(i) \(S_0^1 = 10 \) and \(S_0^2 = 20 \).

(ii) Stock 1’s volatility is 0.18.

(iii) Stock 2’s volatility is 0.25.

(iv) The correlation between the continuously compounded returns of the two stocks is \(-0.40\).

(v) The continuously compounded risk-free interest rate is 5%.

(vi) A one-year European option with payoff \(\max\{\min\{2S_1^1, S_1^2\} - 17, 0\} \) has a current (time-0) price of 1.632.

Consider a European option that gives its holder the right to sell either two shares of Stock 1 or one share of Stock 2 at a price of 17 one year from now. Calculate the current (time-0) price of this option.

Solution:
Exercise 2 [SOA Exam MFE Spring 2007 Question Q6]: Consider a model with two stocks. Each stock pays dividends continuously at a rate proportional to its price. S^j_t denotes the price of one share of stock j at time t. Consider a claim maturing at time 3. The payoff of the claim is $\max\{S^1_3, S^2_3\}$. You are given:

(i) $S^1_0 = $100.
(ii) $S^2_0 = $200.
(iii) Stock 1 pays dividends of amount $0.05S^1_t dt$ between time t and time $t + dt$.
(iv) Stock 2 pays dividends of amount $0.1S^2_t dt$ between time t and time $t + dt$.
(v) The price of a European option to exchange Stock 2 for Stock 1 at time 3 is 10. Calculate the price of the claim.

Example 3 [SOA Advanced Derivatives Sample Question Q3]: An insurance company sells single premium deferred annuity contracts with return linked to a stock index, the time-t value of one unit of which is denoted by S_t. The contracts offer a minimum guarantee return rate of $g\%$. At time 0, a single premium of amount π is paid by the policyholder, and $\pi \times y\%$ is deducted by the insurance company. Thus, at the contract maturity date, T, the insurance company will pay the policyholder

$$\pi \times (1 - y\%) \times \max\left\{\frac{S_T}{S_0}, (1 + g\%)^T\right\}.$$

You are given the following information:

(i) The contract will mature in one year.
(ii) The minimum guarantee rate of return, $g\%$, is 3%.
(iii) Dividends are incorporated in the stock index. That is, the stock index is constructed with all stock dividend reinvested.
(iv) $S_0 = 100$.
(v) The price of a one-year European put option, with strike price of 103, on the stock index is 15.21.

Determine $y\%$, so that the insurance company does not make or lose money on this contract.

Solution:
Exercise 3: The pound/dollar exchange rate is assumed to follow the Black-Scholes framework. You are given:

(i) The spot exchange rate is USD2/GBP.
(ii) The continuously compounded risk-free interest rate for pounds is 4%.
(iii) The continuously compounded risk-free interest rate for dollars is 3%.
(iv) The volatility of the currency exchange rate is 10%.

An agreement will pay you the maximum of USD100 and GBP50 at the end of one year. Calculate the value in dollars of this agreement to you.
6.2.18 A **chooser option** gives the right to the long position of the option to **choose**, at time T_1, whether the long option is a plain vanilla European call or put option with an expiration date $T_2 \geq T_1$ and a strike price K. Though the **choosing decision** happens at time T_1, the expiration date T_2 and the strike price K of the call or put option are set at the issuance date 0 of the chooser option.

6.2.19 The payoff of the long chooser option at time T_1 (not T_2!) is given by:

$$\text{Payoff of long chooser option at } T_1 = \max \{C(T_1, S; \delta, r, \sigma; K, T_2), P(T_1, S; \delta, r, \sigma; K, T_2)\}.$$

6.2.20 Using similar arguments as in 6.2.15, the payoff of the long chooser option at time T_1 can be **decomposed** as:

$$\max \{C(T_1, S; \delta, r, \sigma; K, T_2), P(T_1, S; \delta, r, \sigma; K, T_2)\} = C(T_1, S; \delta, r, \sigma; K, T_2) + (P(T_1, S; \delta, r, \sigma; K, T_2) - C(T_1, S; \delta, r, \sigma; K, T_2))_+$$

$$= P(T_1, S; \delta, r, \sigma; K, T_2) + (C(T_1, S; \delta, r, \sigma; K, T_2) - P(T_1, S; \delta, r, \sigma; K, T_2))_+.$$

Furthermore, by put-call parity, which holds from time T_1 to T_2,

$$\max \{C(T_1, S; \delta, r, \sigma; K, T_2), P(T_1, S; \delta, r, \sigma; K, T_2)\} = C(T_1, S; \delta, r, \sigma; K, T_2) + e^{-\delta(T_2 - T_1)}(K e^{-(r-\delta)(T_2 - T_1)} - S_{T_1})_+$$

$$= P(T_1, S; \delta, r, \sigma; K, T_2) + e^{-\delta(T_2 - T_1)}(S_{T_1} - K e^{-(r-\delta)(T_2 - T_1)})_+.$$

Finally, making use of 4.2.8 (again!), for any $t \in [0, T_1]$,

$$V_{\text{chooser}}(t, S; \delta, r, \sigma; T_1, K, T_2) = C(t, S; \delta, r, \sigma; K, T_2) + e^{-\delta(T_2 - T_1)}P(t, S; \delta, r, \sigma; K e^{-(r-\delta)(T_2 - T_1)}, T_1)$$

$$= P(t, S; \delta, r, \sigma; K, T_2) + e^{-\delta(T_2 - T_1)}C(t, S; \delta, r, \sigma; K e^{-(r-\delta)(T_2 - T_1)}, T_1).$$
Example 4 [SOA Advanced Derivatives Sample Question Q25]: Consider a chooser option (also known as an as-you-like-it option) on a non-dividend-paying stock. At time 1, its holder will choose whether it becomes a European call option or a European put option, each of which will expire at time 3 with a strike price of $100. The chooser option price is $20 at time 0. The stock price is $95 at time $t = 0$. Let C_T denote the price of a European call option at time $t = 0$ on the stock expiring at time T, $T > 0$, with a strike price of 100. You are given:

(i) The risk-free interest rate is 0.

(ii) $C_1 = $4.

Determine C_3.

Solution:

Exercise 4: For a non-dividend-paying stock, you are given:

(i) The stock’s price is 50.

(ii) The stock’s volatility is 10%.

(iii) The continuously compounded risk-free interest rate is 7%.

An option allows you to choose, at the end of 1 month, between at-the-money European call and put options expiring at the end of 3 months from now. Using the Black-Scholes framework, determine the value of this chooser option.

6.2.21 A T_2-expire forward start option intimates plain vanilla European options, except that the strike price is not deterministically fixed at the issuance date 0. Instead, the strike price is determined at an intermediate date T_1 ($\leq T_2$), between the issuance date 0 and the expiration date T_2.
6.2.22 The payoff of the long forward start call option at time T_2 (not T_1!) is given by:

\[
\text{Payoff of long forward start call option at } T_2 = (S_{T_2} - cS_{T_1})_+ ,
\]

for some $c > 0$. Similarly, the payoff of the long forward start put option at time T_2 (not T_1!) is given by:

\[
\text{Payoff of long forward start put option at } T_2 = (cS_{T_1} - S_{T_2})_+ .
\]

6.2.23 For any $t \in [T_1, T_2]$, the valuation formula are simply given by those for the plain vanilla European options. This is because, at any time $t \in [T_1, T_2]$, S_{T_1} has been observed, and hence the strike price is actually deterministic at t:

\[
C_{\text{forward}} (t, S; \delta, r, \sigma; T_1, T_2) = C (t, S; \delta, r, \sigma; cS_{T_1}, T_2) .
\]

\[
P_{\text{forward}} (t, S; \delta, r, \sigma; T_1, T_2) = P (t, S; \delta, r, \sigma; cS_{T_1}, T_2) .
\]

6.2.24 For any $t \in [0, T_1)$, S_{T_1} has not been observed yet. However, by 4.2.8 (!) and tower property of expectation, together with 6.2.23 ($t = T_1$),

\[
C_{\text{forward}} (t, S; \delta, r, \sigma; T_1, T_2) = e^{-r(T_2-t)}E^Q \left[(S_{T_2} - cS_{T_1})_+ \mid S \right]
\]

\[
= e^{-r(T_2-t)}E^Q \left[E^Q \left[(S_{T_2} - cS_{T_1})_+ \mid S_{T_1} \right] \mid S \right]
\]

\[
= e^{-r(T_2-t)}E^Q \left[e^{r(T_2-T_1)}C (T_1, S_{T_1}; \delta, r, \sigma; cS_{T_1}, T_2) \mid S \right]
\]

\[
= e^{-r(T_2-t)}e^{r(T_1-T_2)}E^Q \left[S_{T_1} e^{-\delta(T_2-T_1)}N (d_1) - cS_{T_1} e^{-r(T_2-T_1)}N (d_2) \mid S \right]
\]

\[
= e^{-r(T_2-t)}E^Q \left[S_{T_1} \left(e^{-\delta(T_2-T_1)}N (d_1) - ce^{-r(T_2-T_1)}N (d_2) \right) \mid S \right]
\]

\[
= e^{-r(T_2-t)}E^Q \left[S_{T_1} \mid S \right] \left(e^{-\delta(T_2-T_1)}N (d_1) - ce^{-r(T_2-T_1)}N (d_2) \right) ,
\]

where d_1 and d_2 are independent of S_{T_1}:

\[
d_1 = \frac{-\ln c + \left(r - \delta + \frac{1}{2} \sigma^2 \right) (T_2 - T_1)}{\sigma \sqrt{T_2 - T_1}} = d_2 + \sigma \sqrt{T_2 - T_1},
\]

\[
d_2 = \frac{-\ln c + \left(r - \delta - \frac{1}{2} \sigma^2 \right) (T_2 - T_1)}{\sigma \sqrt{T_2 - T_1}} = d_1 - \sigma \sqrt{T_2 - T_1}.
\]

Therefore, the valuation formula of the long forward start call option is substantially simplified: for any $t \in [0, T_1)$,

\[
C_{\text{forward}} (t, S; \delta, r, \sigma; T_1, T_2) = e^{-\delta(T_1-t)}S \left(e^{-\delta(T_2-T_1)}N (d_1) - ce^{-r(T_2-T_1)}N (d_2) \right) .
\]

In particular, at time 0, the price of the long forward start call option is given by:

\[
C_{\text{forward}} (0, S; \delta, r, \sigma; T_1, T_2) = e^{-\delta T_1}C (0, S; \delta, r, \sigma; cS, T_2 - T_1) .
\]
Similarly, the valuation formula of the long forward start put option is given by: for any $t \in [0, T_1)$,

$$P_{\text{forward}} (t, S; \delta, r, \sigma; T_1, T_2) = e^{-\delta(T_1-t)} S \left(e^{-r(T_2-T_1)} N (-d_2) - e^{-\delta(T_2-T_1)} N (-d_1) \right).$$

In particular, at time 0, the price of the long forward start put option is given by:

$$P_{\text{forward}} (0, S; \delta, r, \sigma; T_1, T_2) = e^{-\delta T_1} P (0, S; \delta, r, \sigma; cS, T_2 - T_1).$$

Example 5 [SOA Advanced Derivatives Sample Question Q19]: Consider a forward start option which, 1 year from today, will give its owner a 1-year European call option with a strike price equal to the stock price at that time. You are given:

(i) The European call option is on a stock that pays no dividends.

(ii) The stock’s volatility is 30%.

(iii) The forward price for delivery of 1 share of the stock 1 year from today is 100.

(iv) The continuously compounded risk-free interest rate is 8%.

Under the Black-Scholes framework, determine the price today of the forward start option.

Solution:

Exercise 5 [SOA Advanced Derivatives Sample Question Q33]: You own one share of a non-dividend-paying stock. Because you worry that its price may drop over the next year, you decide to employ a rolling insurance strategy, which entails obtaining one 3-month European put option on the stock every three months, with the first one being bought immediately. You are given:

(i) The continuously compounded risk-free interest rate is 8%.

(ii) The stock’s volatility is 30%.

(iii) The current stock price is 45.

(iv) The strike price for each option is 90% of the then-current stock price.

Your broker will sell you the four options but will charge you for their total cost now. Under the Black-Scholes framework, how much do you now pay your broker?
6.3 Exotic Options II: Asian (Arithmetic and Geometric), Barrier, Lookback, Compound, and Shout

TBA