top
|
index
|
Macaulay2 website
Triplets : Table of Contents
Triplets
-- Betti diagrams and hypercohomology tables associated to triplets of degree sequences
Betti1(Triplet)
-- Betti numbers of first pure complex
Betti3(Triplet)
-- Betti numbers of the three pure complexes
BettiDiagram1(Triplet)
-- Betti diagram of first pure complex
BettiDiagram3(Triplet)
-- Betti diagrams of the three pure complexes
binPol(RingElement,ZZ,ZZ)
-- product of two binomial polynomials
chiPol(RingElement,ZZ,List,List)
-- Hilbert polynomial of cohomology sheaves
cohMatrix(ZZ,ZZ,Triplet)
-- cohomology table in matrix form
cohTable(ZZ,ZZ,Triplet)
-- cohomology table
conj(List,ZZ)
-- conjugate of degree sequence
dualHomTriplet(Triplet)
-- the dual homology triplet
hilbCoeff(Triplet)
-- coefficients of Hilbert polynomial
hilbPol(RingElement,ZZ,List,List)
-- Hilbert polynomial
isDegreeTriplet(Triplet)
-- checks if it is a degree triplet
isHomologyTriplet(Triplet)
-- checks if it is a homology triplet
rotBack(Triplet)
-- backward cyclic permutation
rotForw(Triplet)
-- forward cyclic permutation
strands(List)
-- strand span of degree sequence
strandsL(ZZ,List)
-- strand span as a subset of [0,n]
toDegree(Triplet)
-- from homology triplet to degree triplet
toHomology(Triplet)
-- from degree triplet to homology triplet
Triplet
-- triplet
triplet(List,List,List)
-- make a triplet
type(Triplet)
-- number of variables