next | previous | forward | backward | up | top | index | toc | Macaulay2 website
SubalgebraBases :: toricSyz

toricSyz -- Calculate toric syzygies of monomials in the initial algebra.

Synopsis

Description

This is an experimental implementation of algorithm 11.18 in Sturmfels' "Gröbner bases and Convex Polytopes."

i1 : R = QQ[t_1,t_2];
i2 : A = subring sagbi{t_1^2,t_1*t_2,t_2^2};
i3 : M = matrix{{t_1^2, t_1*t_2}};

             1       2
o3 : Matrix R  <--- R
i4 : toricSyz(A, M)

o4 = | -t_2^2  t_1t_2 |
     | -t_1t_2 t_1^2  |

             2       2
o4 : Matrix R  <--- R

See Experimental feature: modules over subrings for another example.

Ways to use toricSyz :

For the programmer

The object toricSyz is a method function.