StronglyStableIdeals : Index
-
gotzmannDecomposition -- Compute Gotzmann's decomposition of Hilbert polynomial
-
gotzmannDecomposition(ProjectiveHilbertPolynomial) -- Compute Gotzmann's decomposition of Hilbert polynomial
-
gotzmannDecomposition(RingElement) -- Compute Gotzmann's decomposition of Hilbert polynomial
-
gotzmannNumber -- Compute the Gotzmann number of a Hilbert polynomial
-
gotzmannNumber(ProjectiveHilbertPolynomial) -- Compute the Gotzmann number of a Hilbert polynomial
-
gotzmannNumber(RingElement) -- Compute the Gotzmann number of a Hilbert polynomial
-
isGenSegment -- gen-segment ideals
-
isGenSegment(Ideal) -- gen-segment ideals
-
isGenSegment(MonomialIdeal) -- gen-segment ideals
-
isHilbertPolynomial -- Determine whether a numerical polynomial can be a Hilbert polynomial
-
isHilbertPolynomial(ProjectiveHilbertPolynomial) -- Determine whether a numerical polynomial can be a Hilbert polynomial
-
isHilbertPolynomial(RingElement) -- Determine whether a numerical polynomial can be a Hilbert polynomial
-
isHilbSegment -- hilb-segment ideals
-
isHilbSegment(Ideal) -- hilb-segment ideals
-
isHilbSegment(MonomialIdeal) -- hilb-segment ideals
-
isRegSegment -- reg-segment ideals
-
isRegSegment(Ideal) -- reg-segment ideals
-
isRegSegment(MonomialIdeal) -- reg-segment ideals
-
lexIdeal -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
-
lexIdeal(...,CoefficientRing=>...) -- Option to set the ring of coefficients
-
lexIdeal(...,OrderVariables=>...) -- Option to set the order of indexed variables
-
lexIdeal(ProjectiveHilbertPolynomial,PolynomialRing) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
-
lexIdeal(ProjectiveHilbertPolynomial,ZZ) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
-
lexIdeal(RingElement,PolynomialRing) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
-
lexIdeal(RingElement,ZZ) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
-
lexIdeal(ZZ,PolynomialRing) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
-
lexIdeal(ZZ,ZZ) -- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
-
macaulayDecomposition -- Compute Macaulay's decomposition of Hilbert polynomial
-
macaulayDecomposition(ProjectiveHilbertPolynomial) -- Compute Macaulay's decomposition of Hilbert polynomial
-
macaulayDecomposition(RingElement) -- Compute Macaulay's decomposition of Hilbert polynomial
-
MaxRegularity -- Option to set the maximum regularity
-
OrderVariables -- Option to set the order of indexed variables
-
projectiveHilbertPolynomial(RingElement)
-
StronglyStableIdeals -- Find strongly stable ideals with a given Hilbert polynomial
-
stronglyStableIdeals -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
-
stronglyStableIdeals(...,CoefficientRing=>...) -- Option to set the ring of coefficients
-
stronglyStableIdeals(...,MaxRegularity=>...) -- Option to set the maximum regularity
-
stronglyStableIdeals(...,OrderVariables=>...) -- Option to set the order of indexed variables
-
stronglyStableIdeals(ProjectiveHilbertPolynomial,PolynomialRing) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
-
stronglyStableIdeals(ProjectiveHilbertPolynomial,ZZ) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
-
stronglyStableIdeals(RingElement,PolynomialRing) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
-
stronglyStableIdeals(RingElement,ZZ) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
-
stronglyStableIdeals(ZZ,PolynomialRing) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
-
stronglyStableIdeals(ZZ,ZZ) -- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial