The slack ideal of a d-polytope or rank d+1 matroid is the ideal of (d+2)-minors of its symbolic slack matrix, saturated by the product of the variables in the matrix.
i1 : V = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; |
i2 : I = slackIdeal V Order of vertices is {{0, 0}, {1, 0}, {0, 1}, {1, 1}} o2 = ideal(x x x x - x x x x ) 0 3 5 6 1 2 4 7 o2 : Ideal of QQ[x ..x ] 0 7 |
If a list of points is given it can be treated as the vertices of a polytope, the ground set of a matroid or the facets of an abstract polytope by specifying the option Object. The default is as a polytope.
i3 : V = {{0, 0}, {1, 0}, {1, 1}, {0, 1}}; |
i4 : IP = slackIdeal V Order of vertices is {{0, 0}, {1, 0}, {0, 1}, {1, 1}} o4 = ideal(x x x x - x x x x ) 0 3 5 6 1 2 4 7 o4 : Ideal of QQ[x ..x ] 0 7 |
i5 : IM = slackIdeal(V, Object => "matroid") o5 = ideal (x x x + x x x , x x x + x x x , x x x + x x x , x x x + 4 8 10 5 7 11 1 8 9 2 6 11 0 5 9 2 3 10 0 4 6 ------------------------------------------------------------------------ x x x , x x x x - x x x x , x x x x - x x x x , x x x x - 1 3 7 1 3 8 10 0 5 6 11 0 4 8 9 2 3 7 11 1 5 7 9 ------------------------------------------------------------------------ x x x x ) 2 4 6 10 o5 : Ideal of QQ[x ..x ] 0 11 |
The object slackIdeal is a method function with options.