next | previous | forward | backward | up | top | index | toc | Macaulay2 website
RealRoots :: characteristicPolynomial

characteristicPolynomial -- the characteristic polynomial of a matrix or the characteristic polynomial of the regular representation of a polynomial

Synopsis

Description

This computes the characteristic polynomial of the matrix M, or the characteristic polynomial of the regular representation of f on the Artinian ring ring f, or the characteristic polynomial of the regular representation of g on the Artinian ring (ring g)/I.

i1 : R = QQ[x,y]

o1 = R

o1 : PolynomialRing
i2 : M = matrix{{2,1},{1,-1}}

o2 = | 2 1  |
     | 1 -1 |

              2        2
o2 : Matrix ZZ  <--- ZZ
i3 : characteristicPolynomial(M)

      2
o3 = Z  - Z - 3

o3 : ZZ[Z]

We can also change the variable name, as we show below.

i4 : characteristicPolynomial(M,Variable => "x")

      2
o4 = x  - x - 3

o4 : ZZ[x]

We show the last two methods.

i5 : I = ideal(y^2 - x^2 - 1,x - y^2 + 4*y - 2)

               2    2         2
o5 = ideal (- x  + y  - 1, - y  + x + 4y - 2)

o5 : Ideal of R
i6 : characteristicPolynomial(y,I)

      4     3      2
o6 = Z  - 8Z  + 19Z  - 16Z + 5

o6 : QQ[Z]
i7 : S = R/I

o7 = S

o7 : QuotientRing
i8 : characteristicPolynomial(y)

      4     3      2
o8 = Z  - 8Z  + 19Z  - 16Z + 5

o8 : QQ[Z]

Ways to use characteristicPolynomial :

For the programmer

The object characteristicPolynomial is a method function with options.