i1 : P = convexHull matrix {{3,0,0,0,1},{0,3,0,0,1},{0,0,3,0,1}} o1 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of polyhedron => 3 number of facets => 4 number of rays => 0 number of vertices => 4 o1 : Polyhedron |
i2 : isSimplicial P o2 = true |
i3 : P = hypercube 2 o3 = {ambient dimension => 2 } dimension of lineality space => 0 dimension of polyhedron => 2 number of facets => 4 number of rays => 0 number of vertices => 4 o3 : Polyhedron |
i4 : isSimplicial P o4 = false |
i5 : C = posHull matrix {{1,0,0,1},{0,1,0,1},{0,0,1,1}} o5 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of the cone => 3 number of facets => 3 number of rays => 3 o5 : Cone |
i6 : isSimplicial C o6 = true |
i7 : C = posHull matrix {{1,1,-1,-1},{1,-1,1,-1},{1,1,1,1}} o7 = {ambient dimension => 3 } dimension of lineality space => 0 dimension of the cone => 3 number of facets => 4 number of rays => 4 o7 : Cone |
i8 : isSimplicial C o8 = false |
i9 : F = normalFan hypercube 3 o9 = {ambient dimension => 3 } number of generating cones => 8 number of rays => 6 top dimension of the cones => 3 o9 : Fan |
i10 : isSimplicial F o10 = true |
i11 : PC = skeleton(2,polyhedralComplex crossPolytope 3) o11 = {ambient dimension => 3 } number of generating polyhedra => 8 top dimension of the polyhedra => 2 o11 : PolyhedralComplex |
i12 : isSimplicial PC o12 = true |
The object isSimplicial is a method function.